206 research outputs found

    Efficient Generation of Correctness Certificates for the Abstract Domain of Polyhedra

    Full text link
    Polyhedra form an established abstract domain for inferring runtime properties of programs using abstract interpretation. Computations on them need to be certified for the whole static analysis results to be trusted. In this work, we look at how far we can get down the road of a posteriori verification to lower the overhead of certification of the abstract domain of polyhedra. We demonstrate methods for making the cost of inclusion certificate generation negligible. From a performance point of view, our single-representation, constraints-based implementation compares with state-of-the-art implementations

    A certifying frontend for (sub)polyhedral abstract domains

    No full text
    Convex polyhedra provide a relational abstraction of numerical properties for static analysis of programs by abstract interpretation. We describe a lightweight certification of polyhedral abstract domains using the Coq proof assistant. Our approach consists in delegating most computations to an untrusted backend and in checking its outputs with a certified frontend. The backend is free to implement relaxations of domain operators in order to trade some precision for more efficiency, but must produce hints about the soundness of its results. Experiments with a full-precision backend show that the certification overhead is small and that the certified abstract domain has comparable performance to non-certifying state-of-the-art implementations

    A Linearization Technique for Multivariate Polynomials Using Convex Polyhedra Based on Handelman-Krivine's Theorem

    No full text
    National audienceWe present a new linearization method to over-approximate non-linear multivariate polynomials with convex polyhedra.It is based on Handelman-Krivine's theorem and consists in using products of constraints of a polyhedron to over-approximate a polynomial on this polyhedron. We implemented it together with two other linearization methods that we will not detail in this paper, but that we shall use as comparison. Our implementation in Ocaml generates certificates that can be verified by a trusted checker, certified in Coq, that guarantees the correctness of our linear approximation

    Certified Roundoff Error Bounds Using Semidefinite Programming.

    Get PDF
    Roundoff errors cannot be avoided when implementing numerical programs with finite precision. The ability to reason about rounding is especially important if one wants to explore a range of potential representations, for instance for FPGAs or custom hardware implementation. This problem becomes challenging when the program does not employ solely linear operations as non-linearities are inherent to many interesting computational problems in real-world applications. Existing solutions to reasoning are limited in the presence of nonlinear correlations between variables, leading to either imprecise bounds or high analysis time. Furthermore, while it is easy to implement a straightforward method such as interval arithmetic, sophisticated techniques are less straightforward to implement in a formal setting. Thus there is a need for methods which output certificates that can be formally validated inside a proof assistant. We present a framework to provide upper bounds on absolute roundoff errors. This framework is based on optimization techniques employing semidefinite programming and sums of squares certificates, which can be formally checked inside the Coq theorem prover. Our tool covers a wide range of nonlinear programs, including polynomials and transcendental operations as well as conditional statements. We illustrate the efficiency and precision of this tool on non-trivial programs coming from biology, optimization and space control. Our tool produces more precise error bounds for 37 percent of all programs and yields better performance in 73 percent of all programs

    Polyhedral Approximation of Multivariate Polynomials using Handelman's Theorem

    No full text
    International audienceConvex polyhedra are commonly used in the static analysis of programs to represent over-approximations of sets of reachable states of numerical program variables. When the analyzed programs contain nonlinear instructions, they do not directly map to standard polyhedral operations: some kind of linearization is needed. Convex polyhe-dra are also used in satisfiability modulo theory solvers which combine a propositional satisfiability solver with a fast emptiness check for polyhedra. Existing decision procedures become expensive when nonlinear constraints are involved: a fast procedure to ensure emptiness of systems of nonlinear constraints is needed. We present a new linearization algorithm based on Handelman's representation of positive polynomials. Given a polyhedron and a polynomial (in)equality, we compute a polyhedron enclosing their intersection as the solution of a parametric linear programming problem. To get a scalable algorithm, we provide several heuristics that guide the construction of the Handelman's representation. To ensure the correctness of our polyhedral approximation , our Ocaml implementation generates certificates verified by a checker certified in Coq

    A Verified Certificate Checker for Finite-Precision Error Bounds in Coq and HOL4

    Full text link
    Being able to soundly estimate roundoff errors of finite-precision computations is important for many applications in embedded systems and scientific computing. Due to the discrepancy between continuous reals and discrete finite-precision values, automated static analysis tools are highly valuable to estimate roundoff errors. The results, however, are only as correct as the implementations of the static analysis tools. This paper presents a formally verified and modular tool which fully automatically checks the correctness of finite-precision roundoff error bounds encoded in a certificate. We present implementations of certificate generation and checking for both Coq and HOL4 and evaluate it on a number of examples from the literature. The experiments use both in-logic evaluation of Coq and HOL4, and execution of extracted code outside of the logics: we benchmark Coq extracted unverified OCaml code and a CakeML-generated verified binary

    Symbolic and analytic techniques for resource analysis of Java bytecode

    Get PDF
    Recent work in resource analysis has translated the idea of amortised resource analysis to imperative languages using a program logic that allows mixing of assertions about heap shapes, in the tradition of separation logic, and assertions about consumable resources. Separately, polyhedral methods have been used to calculate bounds on numbers of iterations in loop-based programs. We are attempting to combine these ideas to deal with Java programs involving both data structures and loops, focusing on the bytecode level rather than on source code

    Verified Code Generation for the Polyhedral Model

    Get PDF
    International audienceThe polyhedral model is a high-level intermediate representation for loop nests that supports elegantly a great many loop optimizations. In a compiler, after polyhedral loop optimizations have been performed, it is necessary and difficult to regenerate sequential or parallel loop nests before continuing compilation. This paper reports on the formalization and proof of semantic preservation of such a code generator that produces sequential code from a polyhedral representation. The formalization and proofs are mechanized using the Coq proof assistant

    A task-based approach to parallel parametric linear programming solving, and application to polyhedral computations

    Full text link
    Parametric linear programming is a central operation for polyhedral computations, as well as in certain control applications.Here we propose a task-based scheme for parallelizing it, with quasi-linear speedup over large problems.This type of parallel applications is challenging, because several tasks mightbe computing the same region. In this paper, we are presenting thealgorithm itself with a parallel redundancy elimination algorithm, andconducting a thorough performance analysis.Comment: arXiv admin note: text overlap with arXiv:1904.0607
    corecore