1,893 research outputs found

    Design of quadrature rules for MĆ¼ntz and MĆ¼ntz-logarithmic polynomials using monomial transformation

    Get PDF
    A method for constructing the exact quadratures for MĆ¼ntz and MĆ¼ntz-logarithmic polynomials is presented. The algorithm does permit to anticipate the precision (machine precision) of the numerical integration of MĆ¼ntz-logarithmic polynomials in terms of the number of Gauss-Legendre (GL) quadrature samples and monomial transformation order. To investigate in depth the properties of classical GL quadrature, we present new optimal asymptotic estimates for the remainder. In boundary element integrals this quadrature rule can be applied to evaluate singular functions with end-point singularity, singular kernel as well as smooth functions. The method is numerically stable, efficient, easy to be implemented. The rule has been fully tested and several numerical examples are included. The proposed quadrature method is more efficient in run-time evaluation than the existing methods for MĆ¼ntz polynomial

    On the efficient numerical solution of lattice systems with low-order couplings

    Full text link
    We apply the Quasi Monte Carlo (QMC) and recursive numerical integration methods to evaluate the Euclidean, discretized time path-integral for the quantum mechanical anharmonic oscillator and a topological quantum mechanical rotor model. For the anharmonic oscillator both methods outperform standard Markov Chain Monte Carlo methods and show a significantly improved error scaling. For the quantum mechanical rotor we could, however, not find a successful way employing QMC. On the other hand, the recursive numerical integration method works extremely well for this model and shows an at least exponentially fast error scaling

    An explicit kernel-split panel-based Nystr\"om scheme for integral equations on axially symmetric surfaces

    Full text link
    A high-order accurate, explicit kernel-split, panel-based, Fourier-Nystr\"om discretization scheme is developed for integral equations associated with the Helmholtz equation in axially symmetric domains. Extensive incorporation of analytic information about singular integral kernels and on-the-fly computation of nearly singular quadrature rules allow for very high achievable accuracy, also in the evaluation of fields close to the boundary of the computational domain.Comment: 30 pages, 5 figures, errata correcte

    Efficient computation of highly oscillatory integrals by using QTT tensor approximation

    Full text link
    We propose a new method for the efficient approximation of a class of highly oscillatory weighted integrals where the oscillatory function depends on the frequency parameter Ļ‰ā‰„0\omega \geq 0, typically varying in a large interval. Our approach is based, for fixed but arbitrary oscillator, on the pre-computation and low-parametric approximation of certain Ļ‰\omega-dependent prototype functions whose evaluation leads in a straightforward way to recover the target integral. The difficulty that arises is that these prototype functions consist of oscillatory integrals and are itself oscillatory which makes them both difficult to evaluate and to approximate. Here we use the quantized-tensor train (QTT) approximation method for functional mm-vectors of logarithmic complexity in mm in combination with a cross-approximation scheme for TT tensors. This allows the accurate approximation and efficient storage of these functions in the wide range of grid and frequency parameters. Numerical examples illustrate the efficiency of the QTT-based numerical integration scheme on various examples in one and several spatial dimensions.Comment: 20 page

    Uncertainty quantification of coal seam gas production prediction using Polynomial Chaos

    Full text link
    A surrogate model approximates a computationally expensive solver. Polynomial Chaos is a method to construct surrogate models by summing combinations of carefully chosen polynomials. The polynomials are chosen to respect the probability distributions of the uncertain input variables (parameters); this allows for both uncertainty quantification and global sensitivity analysis. In this paper we apply these techniques to a commercial solver for the estimation of peak gas rate and cumulative gas extraction from a coal seam gas well. The polynomial expansion is shown to honour the underlying geophysics with low error when compared to a much more complex and computationally slower commercial solver. We make use of advanced numerical integration techniques to achieve this accuracy using relatively small amounts of training data
    • ā€¦
    corecore