1,498 research outputs found

    IEEE Access special section editorial: Artificial intelligence enabled networking

    Get PDF
    With today’s computer networks becoming increasingly dynamic, heterogeneous, and complex, there is great interest in deploying artificial intelligence (AI) based techniques for optimization and management of computer networks. AI techniques—that subsume multidisciplinary techniques from machine learning, optimization theory, game theory, control theory, and meta-heuristics—have long been applied to optimize computer networks in many diverse settings. Such an approach is gaining increased traction with the emergence of novel networking paradigms that promise to simplify network management (e.g., cloud computing, network functions virtualization, and software-defined networking) and provide intelligent services (e.g., future 5G mobile networks). Looking ahead, greater integration of AI into networking architectures can help develop a future vision of cognitive networks that will show network-wide intelligent behavior to solve problems of network heterogeneity, performance, and quality of service (QoS)

    Privacy Implications of In-Network Aggregation Mechanisms for VANETs

    Get PDF
    Research on vehicular ad hoc networks (VANETs) is active and ongoing. Proposed applications range from safety applications, and traffic efficiency applications to entertainment applications. Common to many applications is the need to disseminate possibly privacy-sensitive information, such as location and speed information, over larger distances. In-network aggregation is a promising technology that can help to make such privacy-sensitive information only available in the direct vicinity of vehicles instead of communicating it over larger areas. Further away, only aggregated information that is not privacy-relevant anymore will be known. At the same time, aggregation mechanisms help to cope with the limited available wireless bandwidth. However, the exact privacy properties of aggregation mechanisms have still not been thoroughly researched. In this paper, we propose a metric to measure privacy enhancements provided by in-network aggregation and use it to compare existing schemes

    An efficient broadcasting routing protocol WAODV in mobile ad hoc networks

    Get PDF
    Information broadcasting in wireless network is a necessary building block for cooperative operations. However, the broadcasting causes increases the routing overhead. This paper brings together an array of tools of our adaptive protocol for information broadcasting in MANETs. The proposed protocol in this paper named WAODV (WAIT-AODV). This new adaptive routing discovery protocol for MANETs, lets in nodes to pick out a fantastic motion: both to retransmit receiving request route request (RREQ) messages, to discard, or to wait earlier than making any decision, which dynamically confgures the routing discovery feature to decide a gorgeous motion through the usage of neighbors’ knowledge. Simulations have been conducted to show the effectiveness of the using of techniques adaptive protocol for information broadcasting RREQ packet when integrated into ad hoc on-demand distance vector (AODV) routing protocols for MANET (which is based on simple flooding)

    Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks

    Get PDF
    This book presents collective works published in the recent Special Issue (SI) entitled "Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks”. These works expose the readership to the latest solutions and techniques for MANETs and VANETs. They cover interesting topics such as power-aware optimization solutions for MANETs, data dissemination in VANETs, adaptive multi-hop broadcast schemes for VANETs, multi-metric routing protocols for VANETs, and incentive mechanisms to encourage the distribution of information in VANETs. The book demonstrates pioneering work in these fields, investigates novel solutions and methods, and discusses future trends in these field

    Routing Optimizing Decisions in MANET: The Enhanced Hybrid Routing Protocol (EHRP) with Adaptive Routing based on Network Situation

    Get PDF
    Mobile ad hoc networks (MANETs) are wireless networks that operate without a fixed infrastructure or base station. In MANETs, each node acts as a data source and a router, establishing connections with its neighboring nodes to facilitate communication. This research has introduced the Enhanced Hybrid Routing Protocol (EHRP), which combines the OLSR, AOMDV, and AODV routing protocols while considering the network situation for improved performance. The EHRP protocol begins by broadcasting a RREP (Route Reply) packet to discover a route. The selection of routing options is based on the current network situation. To determine the distance between the source and destination nodes, the proposed EHRP initiates a RREQ (Route Request) packet. In situations where network mobility exceeds the capabilities of the AODV protocol, the EHRP protocol can utilize the OLSR routing protocol for route selection and data transmission, provided that at least 70% of the network nodes remain stable. Additionally, the EHRP protocol effectively handles network load and congestion control through the utilization of the AOMDV routing protocol. Compared to the hybrid routing protocol, the enhanced hybrid routing protocol (EHRP) demonstrates superior performance. Its incorporation of the OLSR, AOMDV, and AODV protocols, along with its adaptive routing adaptation based on network conditions, allows for efficient network management and improved overall network performance. The analysis of packet delivery ratio for EHRP and ZRP reveals that EHRP achieves a packet delivery ratio of 98.01%, while ZRP achieves a packet delivery ratio of 89.99%. These results indicate that the enhanced hybrid routing protocol (EHRP) outperforms the hybrid routing protocol (ZRP) in terms of packet delivery ratio. EHRP demonstrates a higher level of success in delivering packets to their intended destinations compared to ZRP. The analysis of normal routing load for EHRP and ZRP reveals that EHRP exhibits a normal routing load of 0.13%, while ZRP exhibits a higher normal routing load of 0.50%. Based on these results, it can be concluded that the performance of the Enhanced Hybrid Routing Protocol (EHRP) is significantly better than that of the Hybrid Routing Protocol (ZRP) when considering the normal routing load. EHRP demonstrates a lower level of routing overhead and more efficient resource utilization compared to ZRP in scenarios with normal routing load. When comparing the average end-to-end delay between the Enhanced Hybrid Routing Protocol (EHRP) and ZRP, the analysis reveals that EHRP achieves an average delay of 0.06, while ZRP exhibits a higher average delay of 0.23. These findings indicate that the Enhanced Hybrid Routing Protocol (EHRP) performs better than ZRP in terms of average end-to-end delay. EHRP exhibits lower delay, resulting in faster and more efficient transmission of data packets from source to destination compared to ZRP. After considering the overall parameter matrix, which includes factors such as normal routing load, data send and receive throughput, packet delivery ratio, and average end-to-end delay, it becomes evident that the performance of the Enhanced Hybrid Routing Protocol (EHRP) surpasses that of the current hybrid routing protocol (ZRP). Across these metrics, EHRP consistently outperforms ZRP, demonstrating superior performance and efficiency. The Enhanced Hybrid Routing Protocol (EHRP) exhibits better results in terms of normal routing load, higher throughput for data transmission and reception, improved packet delivery ratio, and lower average end-to-end delay. Overall, EHRP offers enhanced performance and effectiveness compared to the existing hybrid routing protocol (ZRP)

    Localisation in wireless sensor networks for disaster recovery and rescuing in built environments

    Get PDF
    A thesis submitted to the University of Bedfordshire in partial fulfilment of the requirements for the degree of Doctor of PhilosophyProgress in micro-electromechanical systems (MEMS) and radio frequency (RF) technology has fostered the development of wireless sensor networks (WSNs). Different from traditional networks, WSNs are data-centric, self-configuring and self-healing. Although WSNs have been successfully applied in built environments (e.g. security and services in smart homes), their applications and benefits have not been fully explored in areas such as disaster recovery and rescuing. There are issues related to self-localisation as well as practical constraints to be taken into account. The current state-of-the art communication technologies used in disaster scenarios are challenged by various limitations (e.g. the uncertainty of RSS). Localisation in WSNs (location sensing) is a challenging problem, especially in disaster environments and there is a need for technological developments in order to cater to disaster conditions. This research seeks to design and develop novel localisation algorithms using WSNs to overcome the limitations in existing techniques. A novel probabilistic fuzzy logic based range-free localisation algorithm (PFRL) is devised to solve localisation problems for WSNs. Simulation results show that the proposed algorithm performs better than other range free localisation algorithms (namely DVhop localisation, Centroid localisation and Amorphous localisation) in terms of localisation accuracy by 15-30% with various numbers of anchors and degrees of radio propagation irregularity. In disaster scenarios, for example, if WSNs are applied to sense fire hazards in building, wireless sensor nodes will be equipped on different floors. To this end, PFRL has been extended to solve sensor localisation problems in 3D space. Computational results show that the 3D localisation algorithm provides better localisation accuracy when varying the system parameters with different communication/deployment models. PFRL is further developed by applying dynamic distance measurement updates among the moving sensors in a disaster environment. Simulation results indicate that the new method scales very well

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of-the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: quality-of-service and video communication, routing protocol and cross-layer design. A few interesting problems about security and delay-tolerant networks are also discussed. This book is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks
    • 

    corecore