6 research outputs found

    Traffic modeling, estimation and control for large-scale congested urban networks

    Get PDF
    Part I of the thesis investigates novel urban traffic state estimation methods utilizing probe vehicle data. Chapter 2 proposes a method to integrate the collective effect of dispersed probe data with traffic kinematic wave theory and data mining techniques to model the spatial and temporal dynamics of queue formation and dissipation in arterials. The queue estimation method captures interdependencies in queue evolutions of successive intersections, and moreover, the method is applicable in oversaturated conditions and includes a queue spillover statistical inference procedure. Chapter 3 develops a travel time reliability model to estimate arterial route travel times distribution (TTD) considering spatial and temporal correlations between traffic states in consecutive links. The model uses link-level travel time data and a heuristic grid clustering method to estimate the state structure and transition probabilities of a Markov chain. By applying the Markov chain procedure, the correlation between states of successive links is integrated and the route-level TTD is estimated. The methods in Part I are tested with various probe vehicle penetration rates on case studies with field measurements and simulated data. The methods are straightforward in implementation and have demonstrated promising performance and accuracy through numerous experiments. Part II studies network-level modeling and control of large-scale urban networks. Chapter 4 is the pioneer that introduces the urban perimeter control for two-region urban cities as an elegant control strategy to decrease delays in urban networks. Perimeter controllers operate on the border between the two regions, and manipulate the percentages of transfer flows between the two regions, such that the number of trips reaching their destinations is maximized. The optimal perimeter control problem is solved by the model predictive control (MPC) scheme, where the prediction model and the plant (reality) are formulated by macroscopic fundamental diagrams (MFD). Chapter 5 extends the perimeter control strategy and MFD modeling to mixed urban-freeway networks to provide a holistic approach for large-scale integrated corridor management (ICM). The network consists of two urban regions, each one with a well-defined MFD, and a freeway, modeled by the asymmetric cell transmission model, that is an alternative commuting route which has one on-ramp and one off-ramp within each urban region. The optimal traffic control problem is solved by the MPC approach to minimize total delay in the entire network considering several control policies with different levels of urban-freeway control coordination. Chapter 6 integrates traffic heterogeneity dynamics in large-scale urban modeling and control to develop a hierarchical control strategy for heterogeneously congested cities. Two aggregated models, region- and subregion-based MFDs, are introduced to study the effect of link density heterogeneity on the scatter and hysteresis of MFD. A hierarchical perimeter flow control problem is proposed to minimize the network delay and to homogenize the distribution of congestion. The first level of the hierarchical control problem is solved by the MPC approach, where the prediction model is the aggregated parsimonious region-based MFD and the plant is the subregion-based MFD, which is a more detailed model. At the lower level, a feedback controller tries to maximize the network outflow, by increasing regional homogeneity

    2nd Symposium on Management of Future motorway and urban Traffic Systems (MFTS 2018): Booklet of abstracts: Ispra, 11-12 June 2018

    Get PDF
    The Symposium focuses on future traffic management systems, covering the subjects of traffic control, estimation, and modelling of motorway and urban networks, with particular emphasis on the presence of advanced vehicle communication and automation technologies. As connectivity and automation are being progressively introduced in our transport and mobility systems, there is indeed a growing need to understand the implications and opportunities for an enhanced traffic management as well as to identify innovative ways and tools to optimise traffic efficiency. In particular the debate on centralised versus decentralised traffic management in the presence of connected and automated vehicles has started attracting the attention of the research community. In this context, the Symposium provides a remarkable opportunity to share novel ideas and discuss future research directions.JRC.C.4-Sustainable Transpor

    Efficient freeway MPC by parameterization of ALINEA and a speed-limited area

    No full text
    Freeway congestion can reduce the freeway throughput due to the capacity drop or due to blocking caused by spillback to upstream ramps. Research has shown that congestion can be reduced by the application of ramp metering and variable speed limits. Model predictive control is a promising strategy for the optimization of the ramp metering rates and variable speed limits to improve the freeway throughput. However, several challenges have to be addressed before it can be applied for the control of freeway traffic. This paper focuses on the challenge of reducing the computation time of MPC strategies for the integration of variable speed limits and ramp metering. This is realized via a parameterized control strategy that optimizes the upstream and downstream boundaries of a speed-limited area and the parameters of the ALINEA ramp metering strategy. Due to the parameterization, the solution space reduces substantially, leading to an improved computation time. More specifically, the number of optimization variables for the variable speed limit strategy becomes independent of the number of variable message signs, and the number of optimization variables for the ramp metering strategy becomes independent of the prediction horizon. The control strategy is evaluated with a macroscopic model of a two-lane freeway with two ON-ramps and OFF-ramps. It is shown that parameterization realizes improved throughput when compared with a non-parameterized strategy when using the same amount of computation time.Transport and PlanningTransport and PlanningDelft Center for Systems and ControlTeam DeSchutte
    corecore