2,686 research outputs found

    Computing Multiplicative Order and Primitive Root in Finite Cyclic Group

    Full text link
    Multiplicative order of an element aa of group GG is the least positive integer nn such that an=ea^n=e, where ee is the identity element of GG. If the order of an element is equal to G|G|, it is called generator or primitive root. This paper describes the algorithms for computing multiplicative order and primitive root in Zp\mathbb{Z}^*_{p}, we also present a logarithmic improvement over classical algorithms.Comment: 8 page

    Families of fast elliptic curves from Q-curves

    Get PDF
    We construct new families of elliptic curves over \FF_{p^2} with efficiently computable endomorphisms, which can be used to accelerate elliptic curve-based cryptosystems in the same way as Gallant-Lambert-Vanstone (GLV) and Galbraith-Lin-Scott (GLS) endomorphisms. Our construction is based on reducing \QQ-curves-curves over quadratic number fields without complex multiplication, but with isogenies to their Galois conjugates-modulo inert primes. As a first application of the general theory we construct, for every p>3p > 3, two one-parameter families of elliptic curves over \FF_{p^2} equipped with endomorphisms that are faster than doubling. Like GLS (which appears as a degenerate case of our construction), we offer the advantage over GLV of selecting from a much wider range of curves, and thus finding secure group orders when pp is fixed. Unlike GLS, we also offer the possibility of constructing twist-secure curves. Among our examples are prime-order curves equipped with fast endomorphisms, with almost-prime-order twists, over \FF_{p^2} for p=21271p = 2^{127}-1 and p=225519p = 2^{255}-19

    The ElGamal cryptosystem over circulant matrices

    Get PDF
    In this paper we study extensively the discrete logarithm problem in the group of non-singular circulant matrices. The emphasis of this study was to find the exact parameters for the group of circulant matrices for a secure implementation. We tabulate these parameters. We also compare the discrete logarithm problem in the group of circulant matrices with the discrete logarithm problem in finite fields and with the discrete logarithm problem in the group of rational points of an elliptic curve

    Normal Elliptic Bases and Torus-Based Cryptography

    Full text link
    We consider representations of algebraic tori Tn(Fq)T_n(F_q) over finite fields. We make use of normal elliptic bases to show that, for infinitely many squarefree integers nn and infinitely many values of qq, we can encode mm torus elements, to a small fixed overhead and to mm ϕ(n)\phi(n)-tuples of FqF_q elements, in quasi-linear time in logq\log q. This improves upon previously known algorithms, which all have a quasi-quadratic complexity. As a result, the cost of the encoding phase is now negligible in Diffie-Hellman cryptographic schemes

    Structure computation and discrete logarithms in finite abelian p-groups

    Full text link
    We present a generic algorithm for computing discrete logarithms in a finite abelian p-group H, improving the Pohlig-Hellman algorithm and its generalization to noncyclic groups by Teske. We then give a direct method to compute a basis for H without using a relation matrix. The problem of computing a basis for some or all of the Sylow p-subgroups of an arbitrary finite abelian group G is addressed, yielding a Monte Carlo algorithm to compute the structure of G using O(|G|^0.5) group operations. These results also improve generic algorithms for extracting pth roots in G.Comment: 23 pages, minor edit
    corecore