21,604 research outputs found

    Efficient Exploration of Gradient Space for Online Learning to Rank

    Full text link
    Online learning to rank (OL2R) optimizes the utility of returned search results based on implicit feedback gathered directly from users. To improve the estimates, OL2R algorithms examine one or more exploratory gradient directions and update the current ranker if a proposed one is preferred by users via an interleaved test. In this paper, we accelerate the online learning process by efficient exploration in the gradient space. Our algorithm, named as Null Space Gradient Descent, reduces the exploration space to only the \emph{null space} of recent poorly performing gradients. This prevents the algorithm from repeatedly exploring directions that have been discouraged by the most recent interactions with users. To improve sensitivity of the resulting interleaved test, we selectively construct candidate rankers to maximize the chance that they can be differentiated by candidate ranking documents in the current query; and we use historically difficult queries to identify the best ranker when tie occurs in comparing the rankers. Extensive experimental comparisons with the state-of-the-art OL2R algorithms on several public benchmarks confirmed the effectiveness of our proposal algorithm, especially in its fast learning convergence and promising ranking quality at an early stage.Comment: To appear on SIGIR '18: The 41st International ACM SIGIR Conference on Research & Development in Information Retrieva

    Optimizing Ranking Models in an Online Setting

    Get PDF
    Online Learning to Rank (OLTR) methods optimize ranking models by directly interacting with users, which allows them to be very efficient and responsive. All OLTR methods introduced during the past decade have extended on the original OLTR method: Dueling Bandit Gradient Descent (DBGD). Recently, a fundamentally different approach was introduced with the Pairwise Differentiable Gradient Descent (PDGD) algorithm. To date the only comparisons of the two approaches are limited to simulations with cascading click models and low levels of noise. The main outcome so far is that PDGD converges at higher levels of performance and learns considerably faster than DBGD-based methods. However, the PDGD algorithm assumes cascading user behavior, potentially giving it an unfair advantage. Furthermore, the robustness of both methods to high levels of noise has not been investigated. Therefore, it is unclear whether the reported advantages of PDGD over DBGD generalize to different experimental conditions. In this paper, we investigate whether the previous conclusions about the PDGD and DBGD comparison generalize from ideal to worst-case circumstances. We do so in two ways. First, we compare the theoretical properties of PDGD and DBGD, by taking a critical look at previously proven properties in the context of ranking. Second, we estimate an upper and lower bound on the performance of methods by simulating both ideal user behavior and extremely difficult behavior, i.e., almost-random non-cascading user models. Our findings show that the theoretical bounds of DBGD do not apply to any common ranking model and, furthermore, that the performance of DBGD is substantially worse than PDGD in both ideal and worst-case circumstances. These results reproduce previously published findings about the relative performance of PDGD vs. DBGD and generalize them to extremely noisy and non-cascading circumstances.Comment: European Conference on Information Retrieval (ECIR) 201

    Similarity Learning for High-Dimensional Sparse Data

    Get PDF
    A good measure of similarity between data points is crucial to many tasks in machine learning. Similarity and metric learning methods learn such measures automatically from data, but they do not scale well respect to the dimensionality of the data. In this paper, we propose a method that can learn efficiently similarity measure from high-dimensional sparse data. The core idea is to parameterize the similarity measure as a convex combination of rank-one matrices with specific sparsity structures. The parameters are then optimized with an approximate Frank-Wolfe procedure to maximally satisfy relative similarity constraints on the training data. Our algorithm greedily incorporates one pair of features at a time into the similarity measure, providing an efficient way to control the number of active features and thus reduce overfitting. It enjoys very appealing convergence guarantees and its time and memory complexity depends on the sparsity of the data instead of the dimension of the feature space. Our experiments on real-world high-dimensional datasets demonstrate its potential for classification, dimensionality reduction and data exploration.Comment: 14 pages. Proceedings of the 18th International Conference on Artificial Intelligence and Statistics (AISTATS 2015). Matlab code: https://github.com/bellet/HDS
    • …
    corecore