9,758 research outputs found

    Efficient enforcement of dynamic cryptographic access control policies for outsourced data

    Get PDF
    Outsourcing of their data to third-party service providers is a cost-effective data management strategy for many organizations. Outsourcing, however, introduces new challenges with respect to ensuring the security and the privacy of the data. In addition to the need for standard access control policies, organizations must now be concerned with the privacy of their data and so hiding the data from the service provider is important. Simply encrypting the data before it is transmitted to the service provider is inefficient and vulnerable to security attacks when the access control policies change. Approaches based on two layers of encryption alleviate the privacy concern but still require re-encryption of the data when policies change. This paper presents a novel and efficient solution that employs two layers of encryption of the data and an encrypted data object containing the second access key. Changes to the access control policies are handled by re-encrypting the object containing the affected key, which is an efficient operation. The paper presents our key management approach, a security analysis of our approach, and an evaluation of the performance of a proof of concept implementation of our approach

    Secure data sharing and processing in heterogeneous clouds

    Get PDF
    The extensive cloud adoption among the European Public Sector Players empowered them to own and operate a range of cloud infrastructures. These deployments vary both in the size and capabilities, as well as in the range of employed technologies and processes. The public sector, however, lacks the necessary technology to enable effective, interoperable and secure integration of a multitude of its computing clouds and services. In this work we focus on the federation of private clouds and the approaches that enable secure data sharing and processing among the collaborating infrastructures and services of public entities. We investigate the aspects of access control, data and security policy languages, as well as cryptographic approaches that enable fine-grained security and data processing in semi-trusted environments. We identify the main challenges and frame the future work that serve as an enabler of interoperability among heterogeneous infrastructures and services. Our goal is to enable both security and legal conformance as well as to facilitate transparency, privacy and effectivity of private cloud federations for the public sector needs. © 2015 The Authors

    Privacy Preserving Enforcement of Sensitive Policies in Outsourced and Distributed Environments

    Get PDF
    The enforcement of sensitive policies in untrusted environments is still an open challenge for policy-based systems. On the one hand, taking any appropriate security decision requires access to these policies. On the other hand, if such access is allowed in an untrusted environment then confidential information might be leaked by the policies. The key challenge is how to enforce sensitive policies and protect content in untrusted environments. In the context of untrusted environments, we mainly distinguish between outsourced and distributed environments. The most attractive paradigms concerning outsourced and distributed environments are cloud computing and opportunistic networks, respectively. In this dissertation, we present the design, technical and implementation details of our proposed policy-based access control mechanisms for untrusted environments. First of all, we provide full confidentiality of access policies in outsourced environments, where service providers do not learn private information about policies. We support expressive policies and take into account contextual information. The system entities do not share any encryption keys. For complex user management, we offer the full-fledged Role-Based Access Control (RBAC) policies. In opportunistic networks, we protect content by specifying expressive policies. In our proposed approach, brokers match subscriptions against policies associated with content without compromising privacy of subscribers. As a result, unauthorised brokers neither gain access to content nor learn policies and authorised nodes gain access only if they satisfy policies specified by publishers. Our proposed system provides scalable key management in which loosely-coupled publishers and subscribers communicate without any prior contact. Finally, we have developed a prototype of the system that runs on real smartphones and analysed its performance.Comment: Ph.D. Dissertation. http://eprints-phd.biblio.unitn.it/1124

    ESPOONERBAC_{{ERBAC}}: Enforcing Security Policies In Outsourced Environments

    Full text link
    Data outsourcing is a growing business model offering services to individuals and enterprises for processing and storing a huge amount of data. It is not only economical but also promises higher availability, scalability, and more effective quality of service than in-house solutions. Despite all its benefits, data outsourcing raises serious security concerns for preserving data confidentiality. There are solutions for preserving confidentiality of data while supporting search on the data stored in outsourced environments. However, such solutions do not support access policies to regulate access to a particular subset of the stored data. For complex user management, large enterprises employ Role-Based Access Controls (RBAC) models for making access decisions based on the role in which a user is active in. However, RBAC models cannot be deployed in outsourced environments as they rely on trusted infrastructure in order to regulate access to the data. The deployment of RBAC models may reveal private information about sensitive data they aim to protect. In this paper, we aim at filling this gap by proposing \textbf{ESPOONERBAC\mathit{ESPOON_{ERBAC}}} for enforcing RBAC policies in outsourced environments. ESPOONERBAC\mathit{ESPOON_{ERBAC}} enforces RBAC policies in an encrypted manner where a curious service provider may learn a very limited information about RBAC policies. We have implemented ESPOONERBAC\mathit{ESPOON_{ERBAC}} and provided its performance evaluation showing a limited overhead, thus confirming viability of our approach.Comment: The final version of this paper has been accepted for publication in Elsevier Computers & Security 2013. arXiv admin note: text overlap with arXiv:1306.482

    Secure Management of Personal Health Records by Applying Attribute-Based Encryption

    Get PDF
    The confidentiality of personal health records is a major problem when patients use commercial Web-based systems to store their health data. Traditional access control mechanisms, such as Role-Based Access Control, have several limitations with respect to enforcing access control policies and ensuring data confidentiality. In particular, the data has to be stored on a central server locked by the access control mechanism, and the data owner loses control on the data from the moment when the data is sent to the requester. Therefore, these mechanisms do not fulfil the requirements of data outsourcing scenarios where the third party storing the data should not have access to the plain data, and it is not trusted to enforce access control policies. In this paper, we describe a new approach which enables secure storage and controlled sharing of patient’s health records in the aforementioned scenarios. A new variant of a ciphertext-policy attribute-based encryption scheme is proposed to enforce patient/organizational access control policies such that everyone can download the encrypted data but only authorized users from the social domain (e.g. family, friends, or fellow patients) or authorized users from the professional\ud domain (e.g. doctors or nurses) are allowed to decrypt it
    • …
    corecore