36,824 research outputs found

    Spectral Thresholds in the Bipartite Stochastic Block Model

    Get PDF
    We consider a bipartite stochastic block model on vertex sets V1V_1 and V2V_2, with planted partitions in each, and ask at what densities efficient algorithms can recover the partition of the smaller vertex set. When ∣V2βˆ£β‰«βˆ£V1∣|V_2| \gg |V_1|, multiple thresholds emerge. We first locate a sharp threshold for detection of the partition, in the sense of the results of \cite{mossel2012stochastic,mossel2013proof} and \cite{massoulie2014community} for the stochastic block model. We then show that at a higher edge density, the singular vectors of the rectangular biadjacency matrix exhibit a localization / delocalization phase transition, giving recovery above the threshold and no recovery below. Nevertheless, we propose a simple spectral algorithm, Diagonal Deletion SVD, which recovers the partition at a nearly optimal edge density. The bipartite stochastic block model studied here was used by \cite{feldman2014algorithm} to give a unified algorithm for recovering planted partitions and assignments in random hypergraphs and random kk-SAT formulae respectively. Our results give the best known bounds for the clause density at which solutions can be found efficiently in these models as well as showing a barrier to further improvement via this reduction to the bipartite block model.Comment: updated version, will appear in COLT 201

    Community detection and stochastic block models: recent developments

    Full text link
    The stochastic block model (SBM) is a random graph model with planted clusters. It is widely employed as a canonical model to study clustering and community detection, and provides generally a fertile ground to study the statistical and computational tradeoffs that arise in network and data sciences. This note surveys the recent developments that establish the fundamental limits for community detection in the SBM, both with respect to information-theoretic and computational thresholds, and for various recovery requirements such as exact, partial and weak recovery (a.k.a., detection). The main results discussed are the phase transitions for exact recovery at the Chernoff-Hellinger threshold, the phase transition for weak recovery at the Kesten-Stigum threshold, the optimal distortion-SNR tradeoff for partial recovery, the learning of the SBM parameters and the gap between information-theoretic and computational thresholds. The note also covers some of the algorithms developed in the quest of achieving the limits, in particular two-round algorithms via graph-splitting, semi-definite programming, linearized belief propagation, classical and nonbacktracking spectral methods. A few open problems are also discussed

    Online Tensor Methods for Learning Latent Variable Models

    Get PDF
    We introduce an online tensor decomposition based approach for two latent variable modeling problems namely, (1) community detection, in which we learn the latent communities that the social actors in social networks belong to, and (2) topic modeling, in which we infer hidden topics of text articles. We consider decomposition of moment tensors using stochastic gradient descent. We conduct optimization of multilinear operations in SGD and avoid directly forming the tensors, to save computational and storage costs. We present optimized algorithm in two platforms. Our GPU-based implementation exploits the parallelism of SIMD architectures to allow for maximum speed-up by a careful optimization of storage and data transfer, whereas our CPU-based implementation uses efficient sparse matrix computations and is suitable for large sparse datasets. For the community detection problem, we demonstrate accuracy and computational efficiency on Facebook, Yelp and DBLP datasets, and for the topic modeling problem, we also demonstrate good performance on the New York Times dataset. We compare our results to the state-of-the-art algorithms such as the variational method, and report a gain of accuracy and a gain of several orders of magnitude in the execution time.Comment: JMLR 201

    Compressing networks with super nodes

    Full text link
    Community detection is a commonly used technique for identifying groups in a network based on similarities in connectivity patterns. To facilitate community detection in large networks, we recast the network to be partitioned into a smaller network of 'super nodes', each super node comprising one or more nodes in the original network. To define the seeds of our super nodes, we apply the 'CoreHD' ranking from dismantling and decycling. We test our approach through the analysis of two common methods for community detection: modularity maximization with the Louvain algorithm and maximum likelihood optimization for fitting a stochastic block model. Our results highlight that applying community detection to the compressed network of super nodes is significantly faster while successfully producing partitions that are more aligned with the local network connectivity, more stable across multiple (stochastic) runs within and between community detection algorithms, and overlap well with the results obtained using the full network

    Efficient method for estimating the number of communities in a network

    Full text link
    While there exist a wide range of effective methods for community detection in networks, most of them require one to know in advance how many communities one is looking for. Here we present a method for estimating the number of communities in a network using a combination of Bayesian inference with a novel prior and an efficient Monte Carlo sampling scheme. We test the method extensively on both real and computer-generated networks, showing that it performs accurately and consistently, even in cases where groups are widely varying in size or structure.Comment: 13 pages, 4 figure
    • …
    corecore