1,011 research outputs found

    Path-Fault-Tolerant Approximate Shortest-Path Trees

    Full text link
    Let G=(V,E)G=(V,E) be an nn-nodes non-negatively real-weighted undirected graph. In this paper we show how to enrich a {\em single-source shortest-path tree} (SPT) of GG with a \emph{sparse} set of \emph{auxiliary} edges selected from EE, in order to create a structure which tolerates effectively a \emph{path failure} in the SPT. This consists of a simultaneous fault of a set FF of at most ff adjacent edges along a shortest path emanating from the source, and it is recognized as one of the most frequent disruption in an SPT. We show that, for any integer parameter k≄1k \geq 1, it is possible to provide a very sparse (i.e., of size O(kn⋅f1+1/k)O(kn\cdot f^{1+1/k})) auxiliary structure that carefully approximates (i.e., within a stretch factor of (2k−1)(2∣F∣+1)(2k-1)(2|F|+1)) the true shortest paths from the source during the lifetime of the failure. Moreover, we show that our construction can be further refined to get a stretch factor of 33 and a size of O(nlog⁥n)O(n \log n) for the special case f=2f=2, and that it can be converted into a very efficient \emph{approximate-distance sensitivity oracle}, that allows to quickly (even in optimal time, if k=1k=1) reconstruct the shortest paths (w.r.t. our structure) from the source after a path failure, thus permitting to perform promptly the needed rerouting operations. Our structure compares favorably with previous known solutions, as we discuss in the paper, and moreover it is also very effective in practice, as we assess through a large set of experiments.Comment: 21 pages, 3 figures, SIROCCO 201

    Space-Efficient Fault-Tolerant Diameter Oracles

    Get PDF
    We design ff-edge fault-tolerant diameter oracles (ff-FDOs). We preprocess a given graph GG on nn vertices and mm edges, and a positive integer ff, to construct a data structure that, when queried with a set FF of ∣FâˆŁâ‰€f|F| \leq f edges, returns the diameter of G−FG-F. For a single failure (f=1f=1) in an unweighted directed graph of diameter DD, there exists an approximate FDO by Henzinger et al. [ITCS 2017] with stretch (1+Δ)(1+\varepsilon), constant query time, space O(m)O(m), and a combinatorial preprocessing time of O~(mn+n1.5Dm/Δ)\widetilde{O}(mn + n^{1.5} \sqrt{Dm/\varepsilon}).We present an FDO for directed graphs with the same stretch, query time, and space. It has a preprocessing time of O~(mn+n2/Δ)\widetilde{O}(mn + n^2/\varepsilon). The preprocessing time nearly matches a conditional lower bound for combinatorial algorithms, also by Henzinger et al. With fast matrix multiplication, we achieve a preprocessing time of O~(n2.5794+n2/Δ)\widetilde{O}(n^{2.5794} + n^2/\varepsilon). We further prove an information-theoretic lower bound showing that any FDO with stretch better than 3/23/2 requires Ω(m)\Omega(m) bits of space. For multiple failures (f>1f>1) in undirected graphs with non-negative edge weights, we give an ff-FDO with stretch (f+2)(f+2), query time O(f2log⁥2n)O(f^2\log^2{n}), O~(fn)\widetilde{O}(fn) space, and preprocessing time O~(fm)\widetilde{O}(fm). We complement this with a lower bound excluding any finite stretch in o(fn)o(fn) space. We show that for unweighted graphs with polylogarithmic diameter and up to f=o(log⁥n/log⁥log⁥n)f = o(\log n/ \log\log n) failures, one can swap approximation for query time and space. We present an exact combinatorial ff-FDO with preprocessing time mn1+o(1)mn^{1+o(1)}, query time no(1)n^{o(1)}, and space n2+o(1)n^{2+o(1)}. When using fast matrix multiplication instead, the preprocessing time can be improved to nω+o(1)n^{\omega+o(1)}, where ω<2.373\omega < 2.373 is the matrix multiplication exponent.Comment: Full version of a paper to appear at MFCS'21. Abstract shortened to meet ArXiv requirement

    Node Labels in Local Decision

    Get PDF
    The role of unique node identifiers in network computing is well understood as far as symmetry breaking is concerned. However, the unique identifiers also leak information about the computing environment - in particular, they provide some nodes with information related to the size of the network. It was recently proved that in the context of local decision, there are some decision problems such that (1) they cannot be solved without unique identifiers, and (2) unique node identifiers leak a sufficient amount of information such that the problem becomes solvable (PODC 2013). In this work we give study what is the minimal amount of information that we need to leak from the environment to the nodes in order to solve local decision problems. Our key results are related to scalar oracles ff that, for any given nn, provide a multiset f(n)f(n) of nn labels; then the adversary assigns the labels to the nn nodes in the network. This is a direct generalisation of the usual assumption of unique node identifiers. We give a complete characterisation of the weakest oracle that leaks at least as much information as the unique identifiers. Our main result is the following dichotomy: we classify scalar oracles as large and small, depending on their asymptotic behaviour, and show that (1) any large oracle is at least as powerful as the unique identifiers in the context of local decision problems, while (2) for any small oracle there are local decision problems that still benefit from unique identifiers.Comment: Conference version to appear in the proceedings of SIROCCO 201

    Fault-Tolerant ST-Diameter Oracles

    Get PDF
    We study the problem of estimating the ST-diameter of a graph that is subject to a bounded number of edge failures. An f-edge fault-tolerant ST-diameter oracle (f-FDO-ST) is a data structure that preprocesses a given graph G, two sets of vertices S,T, and positive integer f. When queried with a set F of at most f edges, the oracle returns an estimate D? of the ST-diameter diam(G-F,S,T), the maximum distance between vertices in S and T in G-F. The oracle has stretch ? ? 1 if diam(G-F,S,T) ? D? ? ? diam(G-F,S,T). If S and T both contain all vertices, the data structure is called an f-edge fault-tolerant diameter oracle (f-FDO). An f-edge fault-tolerant distance sensitivity oracles (f-DSO) estimates the pairwise graph distances under up to f failures. We design new f-FDOs and f-FDO-STs by reducing their construction to that of all-pairs and single-source f-DSOs. We obtain several new tradeoffs between the size of the data structure, stretch guarantee, query and preprocessing times for diameter oracles by combining our black-box reductions with known results from the literature. We also provide an information-theoretic lower bound on the space requirement of approximate f-FDOs. We show that there exists a family of graphs for which any f-FDO with sensitivity f ? 2 and stretch less than 5/3 requires ?(n^{3/2}) bits of space, regardless of the query time

    Connectivity Oracles for Graphs Subject to Vertex Failures

    Full text link
    We introduce new data structures for answering connectivity queries in graphs subject to batched vertex failures. A deterministic structure processes a batch of d≀d⋆d\leq d_{\star} failed vertices in O~(d3)\tilde{O}(d^3) time and thereafter answers connectivity queries in O(d)O(d) time. It occupies space O(d⋆mlog⁥n)O(d_{\star} m\log n). We develop a randomized Monte Carlo version of our data structure with update time O~(d2)\tilde{O}(d^2), query time O(d)O(d), and space O~(m)\tilde{O}(m) for any failure bound d≀nd\le n. This is the first connectivity oracle for general graphs that can efficiently deal with an unbounded number of vertex failures. We also develop a more efficient Monte Carlo edge-failure connectivity oracle. Using space O(nlog⁥2n)O(n\log^2 n), dd edge failures are processed in O(dlog⁥dlog⁥log⁥n)O(d\log d\log\log n) time and thereafter, connectivity queries are answered in O(log⁥log⁥n)O(\log\log n) time, which are correct w.h.p. Our data structures are based on a new decomposition theorem for an undirected graph G=(V,E)G=(V,E), which is of independent interest. It states that for any terminal set U⊆VU\subseteq V we can remove a set BB of ∣U∣/(s−2)|U|/(s-2) vertices such that the remaining graph contains a Steiner forest for U−BU-B with maximum degree ss

    Sensitivity and Dynamic Distance Oracles via Generic Matrices and Frobenius Form

    Full text link
    Algebraic techniques have had an important impact on graph algorithms so far. Porting them, e.g., the matrix inverse, into the dynamic regime improved best-known bounds for various dynamic graph problems. In this paper, we develop new algorithms for another cornerstone algebraic primitive, the Frobenius normal form (FNF). We apply our developments to dynamic and fault-tolerant exact distance oracle problems on directed graphs. For generic matrices AA over a finite field accompanied by an FNF, we show (1) an efficient data structure for querying submatrices of the first k≄1k\geq 1 powers of AA, and (2) a near-optimal algorithm updating the FNF explicitly under rank-1 updates. By representing an unweighted digraph using a generic matrix over a sufficiently large field (obtained by random sampling) and leveraging the developed FNF toolbox, we obtain: (a) a conditionally optimal distance sensitivity oracle (DSO) in the case of single-edge or single-vertex failures, providing a partial answer to the open question of Gu and Ren [ICALP'21], (b) a multiple-failures DSO improving upon the state of the art (vd. Brand and Saranurak [FOCS'19]) wrt. both preprocessing and query time, (c) improved dynamic distance oracles in the case of single-edge updates, and (d) a dynamic distance oracle supporting vertex updates, i.e., changing all edges incident to a single vertex, in O~(n2)\tilde{O}(n^2) worst-case time and distance queries in O~(n)\tilde{O}(n) time.Comment: To appear at FOCS 202

    Preserving Distances in Very Faulty Graphs

    Get PDF
    Preservers and additive spanners are sparse (hence cheap to store) subgraphs that preserve the distances between given pairs of nodes exactly or with some small additive error, respectively. Since real-world networks are prone to failures, it makes sense to study fault-tolerant versions of the above structures. This turns out to be a surprisingly difficult task. For every small but arbitrary set of edge or vertex failures, the preservers and spanners need to contain replacement paths around the faulted set. Unfortunately, the complexity of the interaction between replacement paths blows up significantly, even from 1 to 2 faults, and the structure of optimal preservers and spanners is poorly understood. In particular, no nontrivial bounds for preservers and additive spanners are known when the number of faults is bigger than 2. Even the answer to the following innocent question is completely unknown: what is the worst-case size of a preserver for a single pair of nodes in the presence of f edge faults? There are no super-linear lower bounds, nor subquadratic upper bounds for f>2. In this paper we make substantial progress on this and other fundamental questions: - We present the first truly sub-quadratic size fault-tolerant single-pair preserver in unweighted (possibly directed) graphs: for any n node graph and any fixed number f of faults, O~(fn^{2-1/2^f}) size suffices. Our result also generalizes to the single-source (all targets) case, and can be used to build new fault-tolerant additive spanners (for all pairs). - The size of the above single-pair preserver grows to O(n^2) for increasing f. We show that this is necessary even in undirected unweighted graphs, and even if you allow for a small additive error: If you aim at size O(n^{2-eps}) for eps>0, then the additive error has to be Omega(eps f). This surprisingly matches known upper bounds in the literature. - For weighted graphs, we provide matching upper and lower bounds for the single pair case. Namely, the size of the preserver is Theta(n^2) for f > 1 in both directed and undirected graphs, while for f=1 the size is Theta(n) in undirected graphs. For directed graphs, we have a superlinear upper bound and a matching lower bound. Most of our lower bounds extend to the distance oracle setting, where rather than a subgraph we ask for any compact data structure

    Planar Reachability Under Single Vertex or Edge Failures

    Get PDF
    International audienceIn this paper we present an efficient reachability oracle under single-edge or single-vertex failures for planar directed graphs. Specifically, we show that a planar digraph G can be preprocessed in O(n log 2 n/log log n) time, producing an O(n log n)-space data structure that can answer in O(log n) time whether u can reach v in G if the vertex x (the edge f) is removed from G, for any query vertices u, v and failed vertex x (failed edge f). To the best of our knowledge, this is the first data structure for planar directed graphs with nearly optimal preprocessing time that answers all-pairs queries under any kind of failures in polylogarithmic time. We also consider 2-reachability problems, where we are given a planar digraph G and we wish to determine if there are two vertex-disjoint (edge-disjoint) paths from u to v, for query vertices u, v. In this setting we provide a nearly optimal 2-reachability oracle, which is the existential variant of the reachability oracle under single failures, with the following bounds. We can construct in O(n polylog n) time an O(n log 3+o(1) n)-space data structure that can check in O(log 2+o(1) n) time for any query vertices u, v whether v is 2-reachable from u, or otherwise find some separating vertex (edge) x lying on all paths from u to v in G. To obtain our results, we follow the general recursive approach of Thorup for reachability in planar graphs [J. ACM '04] and we present new data structures which generalize dominator trees and previous data structures for strong-connectivity under failures [Georgiadis et al., SODA '17]. Our new data structures work also for general digraphs and may be of independent interest

    Exact Computation of a Manifold Metric, via Lipschitz Embeddings and Shortest Paths on a Graph

    Full text link
    Data-sensitive metrics adapt distances locally based the density of data points with the goal of aligning distances and some notion of similarity. In this paper, we give the first exact algorithm for computing a data-sensitive metric called the nearest neighbor metric. In fact, we prove the surprising result that a previously published 33-approximation is an exact algorithm. The nearest neighbor metric can be viewed as a special case of a density-based distance used in machine learning, or it can be seen as an example of a manifold metric. Previous computational research on such metrics despaired of computing exact distances on account of the apparent difficulty of minimizing over all continuous paths between a pair of points. We leverage the exact computation of the nearest neighbor metric to compute sparse spanners and persistent homology. We also explore the behavior of the metric built from point sets drawn from an underlying distribution and consider the more general case of inputs that are finite collections of path-connected compact sets. The main results connect several classical theories such as the conformal change of Riemannian metrics, the theory of positive definite functions of Schoenberg, and screw function theory of Schoenberg and Von Neumann. We develop novel proof techniques based on the combination of screw functions and Lipschitz extensions that may be of independent interest.Comment: 15 page
    • 

    corecore