952 research outputs found

    Efficient Discovery of Expressive Multi-label Rules using Relaxed Pruning

    Full text link
    Being able to model correlations between labels is considered crucial in multi-label classification. Rule-based models enable to expose such dependencies, e.g., implications, subsumptions, or exclusions, in an interpretable and human-comprehensible manner. Albeit the number of possible label combinations increases exponentially with the number of available labels, it has been shown that rules with multiple labels in their heads, which are a natural form to model local label dependencies, can be induced efficiently by exploiting certain properties of rule evaluation measures and pruning the label search space accordingly. However, experiments have revealed that multi-label heads are unlikely to be learned by existing methods due to their restrictiveness. To overcome this limitation, we propose a plug-in approach that relaxes the search space pruning used by existing methods in order to introduce a bias towards larger multi-label heads resulting in more expressive rules. We further demonstrate the effectiveness of our approach empirically and show that it does not come with drawbacks in terms of training time or predictive performance.Comment: Preprint version. To appear in Proceedings of the 22nd International Conference on Discovery Science, 201

    A review of multi-instance learning assumptions

    Get PDF
    Multi-instance (MI) learning is a variant of inductive machine learning, where each learning example contains a bag of instances instead of a single feature vector. The term commonly refers to the supervised setting, where each bag is associated with a label. This type of representation is a natural fit for a number of real-world learning scenarios, including drug activity prediction and image classification, hence many MI learning algorithms have been proposed. Any MI learning method must relate instances to bag-level class labels, but many types of relationships between instances and class labels are possible. Although all early work in MI learning assumes a specific MI concept class known to be appropriate for a drug activity prediction domain; this ‘standard MI assumption’ is not guaranteed to hold in other domains. Much of the recent work in MI learning has concentrated on a relaxed view of the MI problem, where the standard MI assumption is dropped, and alternative assumptions are considered instead. However, often it is not clearly stated what particular assumption is used and how it relates to other assumptions that have been proposed. In this paper, we aim to clarify the use of alternative MI assumptions by reviewing the work done in this area

    Multi-label Rule Learning

    Get PDF
    Research on multi-label classification is concerned with developing and evaluating algorithms that learn a predictive model for the automatic assignment of data points to a subset of predefined class labels. This is in contrast to traditional classification settings, where individual data points cannot be assigned to more than a single class. As many practical use cases demand a flexible categorization of data, where classes must not necessarily be mutually exclusive, multi-label classification has become an established topic of machine learning research. Nowadays, it is used for the assignment of keywords to text documents, the annotation of multimedia files, such as images, videos, or audio recordings, as well as for diverse applications in biology, chemistry, social network analysis, or marketing. During the past decade, increasing interest in the topic has resulted in a wide variety of different multi-label classification methods. Following the principles of supervised learning, they derive a model from labeled training data, which can afterward be used to obtain predictions for yet unseen data. Besides complex statistical methods, such as artificial neural networks, symbolic learning approaches have not only been shown to provide state-of-the-art performance in many applications but are also a common choice in safety-critical domains that demand human-interpretable and verifiable machine learning models. In particular, rule learning algorithms have a long history of active research in the scientific community. They are often argued to meet the requirements of interpretable machine learning due to the human-legible representation of learned knowledge in terms of logical statements. This work presents a modular framework for implementing multi-label rule learning methods. It does not only provide a unified view of existing rule-based approaches to multi-label classification, but also facilitates the development of new learning algorithms. Two novel instantiations of the framework are investigated to demonstrate its flexibility. Whereas the first one relies on traditional rule learning techniques and focuses on interpretability, the second one is based on a generalization of the gradient boosting framework and focuses on predictive performance rather than the simplicity of models. Motivated by the increasing demand for highly scalable learning algorithms that are capable of processing large amounts of training data, this work also includes an extensive discussion of algorithmic optimizations and approximation techniques for the efficient induction of rules. As the novel multi-label classification methods that are presented in this work can be viewed as instantiations of the same framework, they can both benefit from most of these principles. Their effectiveness and efficiency are compared to existing baselines experimentally

    Democratizing Self-Service Data Preparation through Example Guided Program Synthesis,

    Full text link
    The majority of real-world data we can access today have one thing in common: they are not immediately usable in their original state. Trapped in a swamp of data usability issues like non-standard data formats and heterogeneous data sources, most data analysts and machine learning practitioners have to burden themselves with "data janitor" work, writing ad-hoc Python, PERL or SQL scripts, which is tedious and inefficient. It is estimated that data scientists or analysts typically spend 80% of their time in preparing data, a significant amount of human effort that can be redirected to better goals. In this dissertation, we accomplish this task by harnessing knowledge such as examples and other useful hints from the end user. We develop program synthesis techniques guided by heuristics and machine learning, which effectively make data preparation less painful and more efficient to perform by data users, particularly those with little to no programming experience. Data transformation, also called data wrangling or data munging, is an important task in data preparation, seeking to convert data from one format to a different (often more structured) format. Our system Foofah shows that allowing end users to describe their desired transformation, through providing small input-output transformation examples, can significantly reduce the overall user effort. The underlying program synthesizer can often succeed in finding meaningful data transformation programs within a reasonably short amount of time. Our second system, CLX, demonstrates that sometimes the user does not even need to provide complete input-output examples, but only label ones that are desirable if they exist in the original dataset. The system is still capable of suggesting reasonable and explainable transformation operations to fix the non-standard data format issue in a dataset full of heterogeneous data with varied formats. PRISM, our third system, targets a data preparation task of data integration, i.e., combining multiple relations to formulate a desired schema. PRISM allows the user to describe the target schema using not only high-resolution (precise) constraints of complete example data records in the target schema, but also (imprecise) constraints of varied resolutions, such as incomplete data record examples with missing values, value ranges, or multiple possible values in each element (cell), so as to require less familiarity of the database contents from the end user.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163059/1/markjin_1.pd

    Approximating expressive queries on graph-modeled data: The GeX approach

    Get PDF
    We present the GeX (Graph-eXplorer) approach for the approximate matching of complex queries on graph-modeled data. GeX generalizes existing approaches and provides for a highly expressive graph-based query language that supports queries ranging from keyword-based to structured ones. The GeX query answering model gracefully blends label approximation with structural relaxation, under the primary objective of delivering meaningfully approximated results only. GeX implements ad-hoc data structures that are exploited by a top-k retrieval algorithm which enhances the approximate matching of complex queries. An extensive experimental evaluation on real world datasets demonstrates the efficiency of the GeX query answering

    Graph composition in a graph grammar-based method for automata network evolution

    Get PDF
    Piscataway, N
    corecore