641 research outputs found

    Single-Scan Min-Sum Algorithms for Fast Decoding of LDPC Codes

    Full text link
    Many implementations for decoding LDPC codes are based on the (normalized/offset) min-sum algorithm due to its satisfactory performance and simplicity in operations. Usually, each iteration of the min-sum algorithm contains two scans, the horizontal scan and the vertical scan. This paper presents a single-scan version of the min-sum algorithm to speed up the decoding process. It can also reduce memory usage or wiring because it only needs the addressing from check nodes to variable nodes while the original min-sum algorithm requires that addressing plus the addressing from variable nodes to check nodes. To cut down memory usage or wiring further, another version of the single-scan min-sum algorithm is presented where the messages of the algorithm are represented by single bit values instead of using fixed point ones. The software implementation has shown that the single-scan min-sum algorithm is more than twice as fast as the original min-sum algorithm.Comment: Accepted by IEEE Information Theory Workshop, Chengdu, China, 200

    A Simplified Min-Sum Decoding Algorithm for Non-Binary LDPC Codes

    Full text link
    Non-binary low-density parity-check codes are robust to various channel impairments. However, based on the existing decoding algorithms, the decoder implementations are expensive because of their excessive computational complexity and memory usage. Based on the combinatorial optimization, we present an approximation method for the check node processing. The simulation results demonstrate that our scheme has small performance loss over the additive white Gaussian noise channel and independent Rayleigh fading channel. Furthermore, the proposed reduced-complexity realization provides significant savings on hardware, so it yields a good performance-complexity tradeoff and can be efficiently implemented.Comment: Partially presented in ICNC 2012, International Conference on Computing, Networking and Communications. Accepted by IEEE Transactions on Communication

    Compact QC-LDPC Block and SC-LDPC Convolutional Codes for Low-Latency Communications

    Full text link
    Low decoding latency and complexity are two important requirements of channel codes used in many applications, like machine-to-machine communications. In this paper, we show how these requirements can be fulfilled by using some special quasi-cyclic low-density parity-check block codes and spatially coupled low-density parity-check convolutional codes that we denote as compact. They are defined by parity-check matrices designed according to a recent approach based on sequentially multiplied columns. This method allows obtaining codes with girth up to 12. Many numerical examples of practical codes are provided.Comment: 5 pages, 1 figure, presented at IEEE PIMRC 201
    corecore