8,793 research outputs found

    Continuous Nearest Neighbor Queries over Sliding Windows

    Get PDF
    Abstract—This paper studies continuous monitoring of nearest neighbor (NN) queries over sliding window streams. According to this model, data points continuously stream in the system, and they are considered valid only while they belong to a sliding window that contains 1) the W most recent arrivals (count-based) or 2) the arrivals within a fixed interval W covering the most recent time stamps (time-based). The task of the query processor is to constantly maintain the result of long-running NN queries among the valid data. We present two processing techniques that apply to both count-based and time-based windows. The first one adapts conceptual partitioning, the best existing method for continuous NN monitoring over update streams, to the sliding window model. The second technique reduces the problem to skyline maintenance in the distance-time space and precomputes the future changes in the NN set. We analyze the performance of both algorithms and extend them to variations of NN search. Finally, we compare their efficiency through a comprehensive experimental evaluation. The skyline-based algorithm achieves lower CPU cost, at the expense of slightly larger space overhead. Index Terms—Location-dependent and sensitive, spatial databases, query processing, nearest neighbors, data streams, sliding windows.

    Indexing the Earth Mover's Distance Using Normal Distributions

    Full text link
    Querying uncertain data sets (represented as probability distributions) presents many challenges due to the large amount of data involved and the difficulties comparing uncertainty between distributions. The Earth Mover's Distance (EMD) has increasingly been employed to compare uncertain data due to its ability to effectively capture the differences between two distributions. Computing the EMD entails finding a solution to the transportation problem, which is computationally intensive. In this paper, we propose a new lower bound to the EMD and an index structure to significantly improve the performance of EMD based K-nearest neighbor (K-NN) queries on uncertain databases. We propose a new lower bound to the EMD that approximates the EMD on a projection vector. Each distribution is projected onto a vector and approximated by a normal distribution, as well as an accompanying error term. We then represent each normal as a point in a Hough transformed space. We then use the concept of stochastic dominance to implement an efficient index structure in the transformed space. We show that our method significantly decreases K-NN query time on uncertain databases. The index structure also scales well with database cardinality. It is well suited for heterogeneous data sets, helping to keep EMD based queries tractable as uncertain data sets become larger and more complex.Comment: VLDB201
    • …
    corecore