308 research outputs found

    Reliable indoor optical wireless communication in the presence of fixed and random blockers

    Get PDF
    The advanced innovation of smartphones has led to the exponential growth of internet users which is expected to reach 71% of the global population by the end of 2027. This in turn has given rise to the demand for wireless data and internet devices that is capable of providing energy-efficient, reliable data transmission and high-speed wireless data services. Light-fidelity (LiFi), known as one of the optical wireless communication (OWC) technology is envisioned as a promising solution to accommodate these demands. However, the indoor LiFi channel is highly environment-dependent which can be influenced by several crucial factors (e.g., presence of people, furniture, random users' device orientation and the limited field of view (FOV) of optical receivers) which may contribute to the blockage of the line-of-sight (LOS) link. In this thesis, it is investigated whether deep learning (DL) techniques can effectively learn the distinct features of the indoor LiFi environment in order to provide superior performance compared to the conventional channel estimation techniques (e.g., minimum mean square error (MMSE) and least squares (LS)). This performance can be seen particularly when access to real-time channel state information (CSI) is restricted and is achieved with the cost of collecting large and meaningful data to train the DL neural networks and the training time which was conducted offline. Two DL-based schemes are designed for signal detection and resource allocation where it is shown that the proposed methods were able to offer close performance to the optimal conventional schemes and demonstrate substantial gain in terms of bit-error ratio (BER) and throughput especially in a more realistic or complex indoor environment. Performance analysis of LiFi networks under the influence of fixed and random blockers is essential and efficient solutions capable of diminishing the blockage effect is required. In this thesis, a CSI acquisition technique for a reconfigurable intelligent surface (RIS)-aided LiFi network is proposed to significantly reduce the dimension of the decision variables required for RIS beamforming. Furthermore, it is shown that several RIS attributes such as shape, size, height and distribution play important roles in increasing the network performance. Finally, the performance analysis for an RIS-aided realistic indoor LiFi network are presented. The proposed RIS configuration shows outstanding performances in reducing the network outage probability under the effect of blockages, random device orientation, limited receiver's FOV, furniture and user behavior. Establishing a LOS link that achieves uninterrupted wireless connectivity in a realistic indoor environment can be challenging. In this thesis, an analysis of link blockage is presented for an indoor LiFi system considering fixed and random blockers. In particular, novel analytical framework of the coverage probability for a single source and multi-source are derived. Using the proposed analytical framework, link blockages of the indoor LiFi network are carefully investigated and it is shown that the incorporation of multiple sources and RIS can significantly reduce the LOS coverage blockage probability in indoor LiFi systems

    RF Wireless Power and Data Transfer : Experiment-driven Analysis and Waveform Design

    Get PDF
    The brisk deployment of the fifth generation (5G) mobile technology across the globe has accelerated the adoption of Internet of Things (IoT) networks. While 5G provides the necessary bandwidth and latency to connect the trillions of IoT sensors to the internet, the challenge of powering such a multitude of sensors with a replenishable energy source remains. Far-field radio frequency (RF) wireless power transfer (WPT) is a promising technology to address this issue. Conventionally, the RF WPT concepts have been deemed inadequate to deliver wireless power due to the undeniably huge over-the-air propagation losses. Nonetheless, the radical decline in the energy requirement of simple sensing and computing devices over the last few decades has rekindled the interest in RF WPT as a feasible solution for wireless power delivery to IoT sensors. The primary goal in any RF WPT system is to maximize the harvested direct current (DC) power from the minuscule incident RF power. As a result, optimizing the receiver power efficiency is pivotal for an RF WPT system. On similar lines, it is essential to minimize the power losses at the transmitter in order to achieve a sustainable and economically viable RF WPT system. In this regard, this thesis explores the system-level study of an RF WPT system using a digital radio transmitter for applications where alternative analog transmit circuits are impractical. A prototype test-bed comprising low-cost software-defined radio (SDR) transmitter and an off-the-shelf RF energy-harvesting (EH) receiver is developed to experimentally analyze the impact of clipping and nonlinear amplification at the digital radio transmitter on digital baseband waveform. The use of an SDR allows leveraging the test-bed for the research on RF simultaneous wireless information and power transfer (SWIPT); the true potential of this technology can be realized by utilizing the RF spectrum to transport data and power together. The experimental results indicate that a digital radio severely distorts high peak-to-average power ratio (PAPR) signals, thereby reducing their average output power and rendering them futile for RF WPT. On similar lines, another test-bed is developed to assess the impact of different waveforms, input impedance mismatch, incident RF power, and load on the receiver power efficiency of an RF WPT system. The experimental results provide the foundation and notion to develop a novel mathematical model for an RF EH receiver. The parametric model relates the harvested DC power to the power distribution of the envelope signal of the incident waveform, which is characterized by the amplitude, phase and frequency of the baseband waveform. The novel receiver model is independent of the receiver circuit’s matching network, rectifier configuration, number of diodes, load as well as input frequency. The efficacy of the model in accurately predicting the output DC power for any given power-level distribution is verified experimentally. Since the novel receiver model associates the output DC power to the parameters of the incident waveform, it is further leveraged to design optimal transmit wave-forms for RF WPT and SWIPT. The optimization problem reveals that a constant envelope signal with varying duty cycle is optimal for maximizing the harvested DC power. Consequently, a pulsed RF waveform is optimal for RF WPT, whereas a continuous phase modulated pulsed RF signal is suitable for RF SWIPT. The superior WPT performance of pulsed RF waveforms over multisine signals is demonstrated experimentally. Similarly, the pulsed phase-shift keying (PSK) signals exhibit superior receiver power efficiency than other communication signals. Nonetheless, varying the duty-cycle of pulsed PSK waveform leads to an efficiency—throughput trade-off in RF SWIPT. Finally, the SDR test-bed is used to evaluate the overall end-to-end power efficiency of different digital baseband waveforms through wireless measurements. The results indicate a 4-PSK modulated signal to be suitable for RF WPT considering the overall power efficiency of the system. The corresponding transmitter, channel and receiver power efficiencies are evaluated as well. The results demonstrate the transmitter power efficiency to be lower than the receiver power efficiency

    Reconfigurable Intelligent Surface Enabled Joint Backscattering and Communication

    Full text link
    Reconfigurable intelligent surface (RIS) as an essential topic in the sixth-generation (6G) communications aims to enhance communication performance or mitigate undesired transmission. However, the controllability of each reflecting element on RIS also enables it to act as a passive backscatter device (BD) and transmit its information to reader devices. In this paper, we propose a RIS-enabled joint backscattering and communication (JBAC) system, where the backscatter communication coexists with the primary communication and occupies no extra spectrum. Specifically, the RIS modifies its reflecting pattern to act as a passive BD and reflect its own information back to the base station (BS) in the backscatter communication, while helping the primary communication from the BS to the users simultaneously. We further present an iterative active beamforming and reflecting pattern design to maximize the user average transmission rate of the primary communication and the goodput of the backscatter communication by solving the formulated multi-objective optimization problem (MOOP). Numerical results fully uncover the impacts of the number of reflecting elements and the reflecting patterns on the system performance, and demonstrate the effectiveness of the proposed scheme. Important practical implementation remarks have also been discussed.Comment: 11 pages, 8 figures, published to IEEE TV

    Energy-Sustainable IoT Connectivity: Vision, Technological Enablers, Challenges, and Future Directions

    Full text link
    Technology solutions must effectively balance economic growth, social equity, and environmental integrity to achieve a sustainable society. Notably, although the Internet of Things (IoT) paradigm constitutes a key sustainability enabler, critical issues such as the increasing maintenance operations, energy consumption, and manufacturing/disposal of IoT devices have long-term negative economic, societal, and environmental impacts and must be efficiently addressed. This calls for self-sustainable IoT ecosystems requiring minimal external resources and intervention, effectively utilizing renewable energy sources, and recycling materials whenever possible, thus encompassing energy sustainability. In this work, we focus on energy-sustainable IoT during the operation phase, although our discussions sometimes extend to other sustainability aspects and IoT lifecycle phases. Specifically, we provide a fresh look at energy-sustainable IoT and identify energy provision, transfer, and energy efficiency as the three main energy-related processes whose harmonious coexistence pushes toward realizing self-sustainable IoT systems. Their main related technologies, recent advances, challenges, and research directions are also discussed. Moreover, we overview relevant performance metrics to assess the energy-sustainability potential of a certain technique, technology, device, or network and list some target values for the next generation of wireless systems. Overall, this paper offers insights that are valuable for advancing sustainability goals for present and future generations.Comment: 25 figures, 12 tables, submitted to IEEE Open Journal of the Communications Societ

    On the Road to 6G: Visions, Requirements, Key Technologies and Testbeds

    Get PDF
    Fifth generation (5G) mobile communication systems have entered the stage of commercial development, providing users with new services and improved user experiences as well as offering a host of novel opportunities to various industries. However, 5G still faces many challenges. To address these challenges, international industrial, academic, and standards organizations have commenced research on sixth generation (6G) wireless communication systems. A series of white papers and survey papers have been published, which aim to define 6G in terms of requirements, application scenarios, key technologies, etc. Although ITU-R has been working on the 6G vision and it is expected to reach a consensus on what 6G will be by mid-2023, the related global discussions are still wide open and the existing literature has identified numerous open issues. This paper first provides a comprehensive portrayal of the 6G vision, technical requirements, and application scenarios, covering the current common understanding of 6G. Then, a critical appraisal of the 6G network architecture and key technologies is presented. Furthermore, existing testbeds and advanced 6G verification platforms are detailed for the first time. In addition, future research directions and open challenges are identified for stimulating the on-going global debate. Finally, lessons learned to date concerning 6G networks are discussed

    Modelling, Dimensioning and Optimization of 5G Communication Networks, Resources and Services

    Get PDF
    This reprint aims to collect state-of-the-art research contributions that address challenges in the emerging 5G networks design, dimensioning and optimization. Designing, dimensioning and optimization of communication networks resources and services have been an inseparable part of telecom network development. The latter must convey a large volume of traffic, providing service to traffic streams with highly differentiated requirements in terms of bit-rate and service time, required quality of service and quality of experience parameters. Such a communication infrastructure presents many important challenges, such as the study of necessary multi-layer cooperation, new protocols, performance evaluation of different network parts, low layer network design, network management and security issues, and new technologies in general, which will be discussed in this book

    Direct communication radio Iinterface for new radio multicasting and cooperative positioning

    Get PDF
    Cotutela: Universidad de defensa UNIVERSITA’ MEDITERRANEA DI REGGIO CALABRIARecently, the popularity of Millimeter Wave (mmWave) wireless networks has increased due to their capability to cope with the escalation of mobile data demands caused by the unprecedented proliferation of smart devices in the fifth-generation (5G). Extremely high frequency or mmWave band is a fundamental pillar in the provision of the expected gigabit data rates. Hence, according to both academic and industrial communities, mmWave technology, e.g., 5G New Radio (NR) and WiGig (60 GHz), is considered as one of the main components of 5G and beyond networks. Particularly, the 3rd Generation Partnership Project (3GPP) provides for the use of licensed mmWave sub-bands for the 5G mmWave cellular networks, whereas IEEE actively explores the unlicensed band at 60 GHz for the next-generation wireless local area networks. In this regard, mmWave has been envisaged as a new technology layout for real-time heavy-traffic and wearable applications. This very work is devoted to solving the problem of mmWave band communication system while enhancing its advantages through utilizing the direct communication radio interface for NR multicasting, cooperative positioning, and mission-critical applications. The main contributions presented in this work include: (i) a set of mathematical frameworks and simulation tools to characterize multicast traffic delivery in mmWave directional systems; (ii) sidelink relaying concept exploitation to deal with the channel condition deterioration of dynamic multicast systems and to ensure mission-critical and ultra-reliable low-latency communications; (iii) cooperative positioning techniques analysis for enhancing cellular positioning accuracy for 5G+ emerging applications that require not only improved communication characteristics but also precise localization. Our study indicates the need for additional mechanisms/research that can be utilized: (i) to further improve multicasting performance in 5G/6G systems; (ii) to investigate sideline aspects, including, but not limited to, standardization perspective and the next relay selection strategies; and (iii) to design cooperative positioning systems based on Device-to-Device (D2D) technology

    Future Wireless Networks: Towards Learning-driven Sixth-generation Wireless Communications

    Get PDF
    The evolution of wireless communication networks, from present to the emerging fifth-generation (5G) new radio (NR), and sixth-generation (6G) is inevitable, yet propitious. The thesis evolves around application of machine learning and optimization techniques to problems in spectrum management, internet-of-things (IoT), physical layer security, and intelligent reflecting surface (IRS). The first problem explores License Assisted Access (LAA), which leverages unlicensed resource sharing with the Wi-Fi network as a promising technique to address the spectrum scarcity issue in wireless networks. An optimal communication policy is devised which maximizes the throughput performance of LAA network while guaranteeing a proportionally fair performance among LAA stations and a fair share for Wi-Fi stations. The numerical results demonstrate more than 75 % improvement in the LAA throughput and a notable gain of 8-9 % in the fairness index. Next, we investigate the unlicensed spectrum sharing for bandwidth hungry diverse IoT networks in 5G NR. An efficient coexistence mechanism based on the idea of adaptive initial sensing duration (ISD) is proposed to enhance the diverse IoT-NR network performance while keeping the primary Wi-Fi network's performance to a bearable threshold. A Q-learning (QL) based algorithm is devised to maximize the normalized sum throughput of the coexistence Wi-Fi/IoT-NR network. The results confirm a maximum throughput gain of 51 % and ensure that the Wi-Fi network's performance remains intact. Finally, advanced levels of network security are critical to maintain due to severe signal attenuation at higher frequencies of 6G wireless communication. Thus, an IRS-based model is proposed to address the issue of network security under trusted-untrusted device diversity, where the untrusted devices may potentially eavesdrop on the trusted devices. A deep deterministic policy gradient (DDPG) algorithm is devised to jointly optimize the active and passive beamforming matrices. The results confirm a maximum gain of 2-2.5 times in the sum secrecy rate of trusted devices and ensure Quality-of-Service (QoS) for all the devices. In conclusion, the thesis has led towards efficient, secure, and smart communication and build foundation to address similar complex wireless networks

    Programmable Software-Defined Testbed for Visible Light UAV Networks: Architecture Design and Implementation

    Get PDF
    As of Today, There Has Been Increasing Research on Designing Optimization Algorithms and Intelligent Network Control Methods for Visible Light Unmanned Aerial Vehicles (UAV) Networks to Provide Pervasive and Broadband Connections. for Those Theoretical Analysis based Algorithms, there is an Urgent Need to Have a Visible Light UAV Network Platform that Can Help Evaluate the Proposed Algorithms in Real-World Scenarios. However, to the Best of Our Knowledge, there is Currently No Dedicated High Data Rate and Flexible Visible Light UAV Networking Prototype. to Bridge This Gap, in This Paper, We First Design a Novel Programmable Software-Defined Architecture for Visible Light UAV Networking, Including Control Plane, Network Plane, Signal Processing Chain and Front-Ends Plane, and Ground Facility Plane. We Then Implement a Prototype and Conduct Numerous Experiments to Validate the Feasibility of Visible-Light UAV Networks and Further Evaluate the System Performance Pertaining to Achievable Data Rate and Transmission Distance. the Real-Time Video Streaming Experimental Results Show that Up to 550 Kbps Data Rate and a Maximum Distance of 7 Meters Can Be Achieved

    Methods of Improving Wireless Communication in Home Automation and Security

    Get PDF
    Tato práce představuje možnosti vylepšení bezdrátové komunikace pro systémy domácí automatizace a zabezpečení. Většina dnešních systémů používá jednofrekvenční komunikaci. Přidání frekvenčního skákání zvyšuje odolnost proti rušení, ale přináší problémy s výdrží baterie nebo s rychlostí odezvy, které nejsou v této třídě elektroniky jednoduše řešitelné.První metoda představená v této práci je vícekanálový přijímač pro centrální jednotku. To umožňuje senzorům spát a po probuzení neřešit synchronizaci se sítí.Druhá metoda je kombinace vícekanálového přijímače s komunikací bezdrátových kamer. Komunikace senzorů se skryje do přenosu obrazu bez přidání dalšího rádia.This thesis presents methods of improving wireless communication in home automation and security. Most current systems use single-frequency communication. Frequency hopping improves resistivity to interference but brings problems with battery lifespan or communication delay, which cannot be simply solved in this class of electronics.The first method proposed in this work is an all-channel receiver for the central unit. It allows the sensors to sleep and avoid lengthy network synchronization after wakeup.The second method is a combination of the all-channel receiver with a communication of wireless cameras. The sensor communication is hidden in video transfer without additional hardware.
    corecore