147,881 research outputs found

    Enhanced processing methods for light field imaging

    Full text link
    The light field camera provides rich textural and geometric information, but it is still challenging to use it efficiently and accurately to solve computer vision problems. Light field image processing is divided into multiple levels. First, low-level processing technology mainly includes the acquisition of light field images and their preprocessing. Second, the middle-level process consists of the depth estimation, light field encoding, and the extraction of cues from the light field. Third, high-level processing involves 3D reconstruction, target recognition, visual odometry, image reconstruction, and other advanced applications. We propose a series of improved algorithms for each of these levels. The light field signal contains rich angular information. By contrast, traditional computer vision methods, as used for 2D images, often cannot make full use of the high-frequency part of the light field angular information. We propose a fast pre-estimation algorithm to enhance the light field feature to improve its speed and accuracy when keeping full use of the angular information.Light field filtering and refocusing are essential cues in light field signal processing. Modern frequency domain filtering technology and wavelet technology have effectively improved light field filtering accuracy but may fail at object edges. We adapted the sub-window filtering with the light field to improve the reconstruction of object edges. Light field images can analyze the effects of scattering and refraction phenomena, and there are still insufficient metrics to evaluate the results. Therefore, we propose a physical rendering-based light field dataset that simulates the distorted light field image through a transparent medium, such as atmospheric turbulence or water surface. The neural network is an essential method to process complex light field data. We propose an efficient 3D convolutional autoencoder network for the light field structure. This network overcomes the severe distortion caused by high-intensity turbulence with limited angular resolution and solves the difficulty of pixel matching between distorted images. This work emphasizes the application and usefulness of light field imaging in computer vision whilst improving light field image processing speed and accuracy through signal processing, computer graphics, computer vision, and artificial neural networks

    Deep Eyes: Binocular Depth-from-Focus on Focal Stack Pairs

    Full text link
    Human visual system relies on both binocular stereo cues and monocular focusness cues to gain effective 3D perception. In computer vision, the two problems are traditionally solved in separate tracks. In this paper, we present a unified learning-based technique that simultaneously uses both types of cues for depth inference. Specifically, we use a pair of focal stacks as input to emulate human perception. We first construct a comprehensive focal stack training dataset synthesized by depth-guided light field rendering. We then construct three individual networks: a Focus-Net to extract depth from a single focal stack, a EDoF-Net to obtain the extended depth of field (EDoF) image from the focal stack, and a Stereo-Net to conduct stereo matching. We show how to integrate them into a unified BDfF-Net to obtain high-quality depth maps. Comprehensive experiments show that our approach outperforms the state-of-the-art in both accuracy and speed and effectively emulates human vision systems

    Joint Blind Motion Deblurring and Depth Estimation of Light Field

    Full text link
    Removing camera motion blur from a single light field is a challenging task since it is highly ill-posed inverse problem. The problem becomes even worse when blur kernel varies spatially due to scene depth variation and high-order camera motion. In this paper, we propose a novel algorithm to estimate all blur model variables jointly, including latent sub-aperture image, camera motion, and scene depth from the blurred 4D light field. Exploiting multi-view nature of a light field relieves the inverse property of the optimization by utilizing strong depth cues and multi-view blur observation. The proposed joint estimation achieves high quality light field deblurring and depth estimation simultaneously under arbitrary 6-DOF camera motion and unconstrained scene depth. Intensive experiment on real and synthetic blurred light field confirms that the proposed algorithm outperforms the state-of-the-art light field deblurring and depth estimation methods
    • …
    corecore