167 research outputs found

    Robust Densest Subgraph Discovery

    Full text link
    Dense subgraph discovery is an important primitive in graph mining, which has a wide variety of applications in diverse domains. In the densest subgraph problem, given an undirected graph G=(V,E)G=(V,E) with an edge-weight vector w=(we)eEw=(w_e)_{e\in E}, we aim to find SVS\subseteq V that maximizes the density, i.e., w(S)/Sw(S)/|S|, where w(S)w(S) is the sum of the weights of the edges in the subgraph induced by SS. Although the densest subgraph problem is one of the most well-studied optimization problems for dense subgraph discovery, there is an implicit strong assumption; it is assumed that the weights of all the edges are known exactly as input. In real-world applications, there are often cases where we have only uncertain information of the edge weights. In this study, we provide a framework for dense subgraph discovery under the uncertainty of edge weights. Specifically, we address such an uncertainty issue using the theory of robust optimization. First, we formulate our fundamental problem, the robust densest subgraph problem, and present a simple algorithm. We then formulate the robust densest subgraph problem with sampling oracle that models dense subgraph discovery using an edge-weight sampling oracle, and present an algorithm with a strong theoretical performance guarantee. Computational experiments using both synthetic graphs and popular real-world graphs demonstrate the effectiveness of our proposed algorithms.Comment: 10 pages; Accepted to ICDM 201

    Densest Subgraph in Dynamic Graph Streams

    Full text link
    In this paper, we consider the problem of approximating the densest subgraph in the dynamic graph stream model. In this model of computation, the input graph is defined by an arbitrary sequence of edge insertions and deletions and the goal is to analyze properties of the resulting graph given memory that is sub-linear in the size of the stream. We present a single-pass algorithm that returns a (1+ϵ)(1+\epsilon) approximation of the maximum density with high probability; the algorithm uses O(\epsilon^{-2} n \polylog n) space, processes each stream update in \polylog (n) time, and uses \poly(n) post-processing time where nn is the number of nodes. The space used by our algorithm matches the lower bound of Bahmani et al.~(PVLDB 2012) up to a poly-logarithmic factor for constant ϵ\epsilon. The best existing results for this problem were established recently by Bhattacharya et al.~(STOC 2015). They presented a (2+ϵ)(2+\epsilon) approximation algorithm using similar space and another algorithm that both processed each update and maintained a (4+ϵ)(4+\epsilon) approximation of the current maximum density in \polylog (n) time per-update.Comment: To appear in MFCS 201

    Core Decomposition in Multilayer Networks: Theory, Algorithms, and Applications

    Get PDF
    Multilayer networks are a powerful paradigm to model complex systems, where multiple relations occur between the same entities. Despite the keen interest in a variety of tasks, algorithms, and analyses in this type of network, the problem of extracting dense subgraphs has remained largely unexplored so far. In this work we study the problem of core decomposition of a multilayer network. The multilayer context is much challenging as no total order exists among multilayer cores; rather, they form a lattice whose size is exponential in the number of layers. In this setting we devise three algorithms which differ in the way they visit the core lattice and in their pruning techniques. We then move a step forward and study the problem of extracting the inner-most (also known as maximal) cores, i.e., the cores that are not dominated by any other core in terms of their core index in all the layers. Inner-most cores are typically orders of magnitude less than all the cores. Motivated by this, we devise an algorithm that effectively exploits the maximality property and extracts inner-most cores directly, without first computing a complete decomposition. Finally, we showcase the multilayer core-decomposition tool in a variety of scenarios and problems. We start by considering the problem of densest-subgraph extraction in multilayer networks. We introduce a definition of multilayer densest subgraph that trades-off between high density and number of layers in which the high density holds, and exploit multilayer core decomposition to approximate this problem with quality guarantees. As further applications, we show how to utilize multilayer core decomposition to speed-up the extraction of frequent cross-graph quasi-cliques and to generalize the community-search problem to the multilayer setting

    Incremental Maintenance of Maximal Cliques in a Dynamic Graph

    Full text link
    We consider the maintenance of the set of all maximal cliques in a dynamic graph that is changing through the addition or deletion of edges. We present nearly tight bounds on the magnitude of change in the set of maximal cliques, as well as the first change-sensitive algorithms for clique maintenance, whose runtime is proportional to the magnitude of the change in the set of maximal cliques. We present experimental results showing these algorithms are efficient in practice and are faster than prior work by two to three orders of magnitude.Comment: 18 pages, 8 figure

    Space- and Time-Efficient Algorithm for Maintaining Dense Subgraphs on One-Pass Dynamic Streams

    Get PDF
    While in many graph mining applications it is crucial to handle a stream of updates efficiently in terms of {\em both} time and space, not much was known about achieving such type of algorithm. In this paper we study this issue for a problem which lies at the core of many graph mining applications called {\em densest subgraph problem}. We develop an algorithm that achieves time- and space-efficiency for this problem simultaneously. It is one of the first of its kind for graph problems to the best of our knowledge. In a graph G=(V,E)G = (V, E), the "density" of a subgraph induced by a subset of nodes SVS \subseteq V is defined as E(S)/S|E(S)|/|S|, where E(S)E(S) is the set of edges in EE with both endpoints in SS. In the densest subgraph problem, the goal is to find a subset of nodes that maximizes the density of the corresponding induced subgraph. For any ϵ>0\epsilon>0, we present a dynamic algorithm that, with high probability, maintains a (4+ϵ)(4+\epsilon)-approximation to the densest subgraph problem under a sequence of edge insertions and deletions in a graph with nn nodes. It uses O~(n)\tilde O(n) space, and has an amortized update time of O~(1)\tilde O(1) and a query time of O~(1)\tilde O(1). Here, O~\tilde O hides a O(\poly\log_{1+\epsilon} n) term. The approximation ratio can be improved to (2+ϵ)(2+\epsilon) at the cost of increasing the query time to O~(n)\tilde O(n). It can be extended to a (2+ϵ)(2+\epsilon)-approximation sublinear-time algorithm and a distributed-streaming algorithm. Our algorithm is the first streaming algorithm that can maintain the densest subgraph in {\em one pass}. The previously best algorithm in this setting required O(logn)O(\log n) passes [Bahmani, Kumar and Vassilvitskii, VLDB'12]. The space required by our algorithm is tight up to a polylogarithmic factor.Comment: A preliminary version of this paper appeared in STOC 201

    Finding Densest kk-Connected Subgraphs

    Get PDF
    Dense subgraph discovery is an important graph-mining primitive with a variety of real-world applications. One of the most well-studied optimization problems for dense subgraph discovery is the densest subgraph problem, where given an edge-weighted undirected graph G=(V,E,w)G=(V,E,w), we are asked to find SVS\subseteq V that maximizes the density d(S)d(S), i.e., half the weighted average degree of the induced subgraph G[S]G[S]. This problem can be solved exactly in polynomial time and well-approximately in almost linear time. However, a densest subgraph has a structural drawback, namely, the subgraph may not be robust to vertex/edge failure. Indeed, a densest subgraph may not be well-connected, which implies that the subgraph may be disconnected by removing only a few vertices/edges within it. In this paper, we provide an algorithmic framework to find a dense subgraph that is well-connected in terms of vertex/edge connectivity. Specifically, we introduce the following problems: given a graph G=(V,E,w)G=(V,E,w) and a positive integer/real kk, we are asked to find SVS\subseteq V that maximizes the density d(S)d(S) under the constraint that G[S]G[S] is kk-vertex/edge-connected. For both problems, we propose polynomial-time (bicriteria and ordinary) approximation algorithms, using classic Mader's theorem in graph theory and its extensions
    corecore