35,114 research outputs found

    Impact assessment of autonomous DRT systems

    Get PDF
    The market entrance of shared autonomous vehicles (SAV) may have disruptive effects on current transport systems and may lead to their total transformation. For many small and medium-sized cities, a full replacement of public transport services by these systems seems to be possible. For a transport system operator, such a system requires a bigger fleet of vehicles than before, however, vehicles are less expensive and fewer staff is needed for the actual operation. In this paper, we are using a simulation-based approach to evaluate the service quality and operating cost of a demand responsive transit (DRT) system for the city of Cottbus (100 000 inhabitants), Germany. The simulation model used is based on an existing MATSim model of the region that depicts a typical work day. Results suggest, that the current public transport system may be replaced by a system of 300 to 400 DRT vehicles, depending on their operational mode. Compared to previous, schedule based public transport, passengers do not need to transfer, and their overall travel times may be reduced significantly. Results for the cost comparison are preliminary, but results suggest that an autonomous DRT system is not necessarily more expensive than the current public transport system

    Arterial traffic signal optimization: a person-based approach

    Get PDF
    This paper presents a traffic responsive signal control system that optimizes signal settings based on minimization of person delay on arterials. The system's underlying mixed integer linear program minimizes person delay by explicitly accounting for the passenger occupancy of autos and transit vehicles. This way it can provide signal priority to transit vehicles in an efficient way even when they travel in conflicting directions. Furthermore, it recognizes the importance of schedule adherence for reliable transit operations and accounts for it by assigning an additional weighting factor on transit delays. This introduces another criterion for resolving the issue of assigning priority to conflicting transit routes. At the same time, the system maintains auto vehicle progression by introducing the appropriate delays for when interruptions of platoons occur. In addition to the fact that it utilizes readily available technologies to obtain the input for the optimization, the system's feasibility in real-world settings is enhanced by its low computation time. The proposed signal control system was tested on a segment of San Pablo Avenue arterial located in Berkeley, California. The findings have shown the system's capability to outperform static optimal signal settings and have demonstrated its success in reducing person delay for bus and in some cases even auto users

    The importance of information flows temporal attributes for the efficient scheduling of dynamic demand responsive transport services

    No full text
    The operation of a demand responsive transport service usually involves the management of dynamic requests. The underlying algorithms are mainly adaptations of procedures carefully designed to solve static versions of the problem, in which all the requests are known in advance. However there is no guarantee that the effectiveness of an algorithm stays unchanged when it is manipulated to work in a dynamic environment. On the other hand, the way the input is revealed to the algorithm has a decisive role on the schedule quality. We analyze three characteristics of the information flow (percentage of real-time requests, interval between call-in and requested pickup time and length of the computational cycle time), assessing their influence on the effectiveness of the scheduling proces

    Testing demand responsive shared transport services via agent-based simulations

    Full text link
    Demand Responsive Shared Transport DRST services take advantage of Information and Communication Technologies ICT, to provide on demand transport services booking in real time a ride on a shared vehicle. In this paper, an agent-based model ABM is presented to test different the feasibility of different service configurations in a real context. First results show the impact of route choice strategy on the system performance

    Optimal Design of Demand-Responsive Feeder Transit Services

    Get PDF
    The general public considers Fixed-Route Transit (FRT) to be inconvenient while Demand-Responsive Transit (DRT) provides much of the desired flexibility with a door-to-door type of service. However, FRT is typically more cost efficient than DRT to deploy. Therefore, there is an increased interest in flexible transit services including all types of hybrid services that combine FRT and pure DRT. The demand-responsive feeder transit, also known as Demand-Responsive Connector (DRC), is a flexible transit service because it operates in a demand-responsive fashion within a service area and moves customers to/from a transfer point that connects to a FRT network. In this research we develop analytical models, validated by simulation, to design the DRC system. Feeder transit services are generally operated with a DRC policy which might be converted to a traditional FRT policy for higher demand. By using continuous approximations, we provide an analytical modeling framework to help planners and operators in their choice of the two policies. We compare utility functions of the two policies to derive rigorous analytical and approximate closed-form expressions of critical demand densities. They represent the switching conditions, that are functions of the parameters of each considered scenario, such as the geometry of the service area, the vehicle speed and also the weights assigned to each term contributing to the utility function: walking time, waiting time and riding time. We address the problem faced by planners in determining the optimal number of zones for dividing a service area. We develop analytical models representing the total cost functions balancing customer service quality and vehicle operating cost. We obtain close-form expressions for the FRT and approximation formulas for the DRC to determine the optimal number of zones. Finally we develop a real-case application with collected customer demand data and road network data of El Cenizo, Texas. With our analytical formulas, we obtain the optimal number of zones, and the times for switching FRT and DRC policies during a day. Simulation results considering the road network of El Cenizo demonstrate that our analytical formulas provide good estimates for practical use
    corecore