6,775 research outputs found

    Efficient Defenses Against Adversarial Attacks

    Full text link
    Following the recent adoption of deep neural networks (DNN) accross a wide range of applications, adversarial attacks against these models have proven to be an indisputable threat. Adversarial samples are crafted with a deliberate intention of undermining a system. In the case of DNNs, the lack of better understanding of their working has prevented the development of efficient defenses. In this paper, we propose a new defense method based on practical observations which is easy to integrate into models and performs better than state-of-the-art defenses. Our proposed solution is meant to reinforce the structure of a DNN, making its prediction more stable and less likely to be fooled by adversarial samples. We conduct an extensive experimental study proving the efficiency of our method against multiple attacks, comparing it to numerous defenses, both in white-box and black-box setups. Additionally, the implementation of our method brings almost no overhead to the training procedure, while maintaining the prediction performance of the original model on clean samples.Comment: 16 page

    Adversarial Attack on Radar-based Environment Perception Systems

    Full text link
    Due to their robustness to degraded capturing conditions, radars are widely used for environment perception, which is a critical task in applications like autonomous vehicles. More specifically, Ultra-Wide Band (UWB) radars are particularly efficient for short range settings as they carry rich information on the environment. Recent UWB-based systems rely on Machine Learning (ML) to exploit the rich signature of these sensors. However, ML classifiers are susceptible to adversarial examples, which are created from raw data to fool the classifier such that it assigns the input to the wrong class. These attacks represent a serious threat to systems integrity, especially for safety-critical applications. In this work, we present a new adversarial attack on UWB radars in which an adversary injects adversarial radio noise in the wireless channel to cause an obstacle recognition failure. First, based on signals collected in real-life environment, we show that conventional attacks fail to generate robust noise under realistic conditions. We propose a-RNA, i.e., Adversarial Radio Noise Attack to overcome these issues. Specifically, a-RNA generates an adversarial noise that is efficient without synchronization between the input signal and the noise. Moreover, a-RNA generated noise is, by-design, robust against pre-processing countermeasures such as filtering-based defenses. Moreover, in addition to the undetectability objective by limiting the noise magnitude budget, a-RNA is also efficient in the presence of sophisticated defenses in the spectral domain by introducing a frequency budget. We believe this work should alert about potentially critical implementations of adversarial attacks on radar systems that should be taken seriously

    Blacklight: Defending Black-Box Adversarial Attacks on Deep Neural Networks

    Full text link
    The vulnerability of deep neural networks (DNNs) to adversarial examples is well documented. Under the strong white-box threat model, where attackers have full access to DNN internals, recent work has produced continual advancements in defenses, often followed by more powerful attacks that break them. Meanwhile, research on the more realistic black-box threat model has focused almost entirely on reducing the query-cost of attacks, making them increasingly practical for ML models already deployed today. This paper proposes and evaluates Blacklight, a new defense against black-box adversarial attacks. Blacklight targets a key property of black-box attacks: to compute adversarial examples, they produce sequences of highly similar images while trying to minimize the distance from some initial benign input. To detect an attack, Blacklight computes for each query image a compact set of one-way hash values that form a probabilistic fingerprint. Variants of an image produce nearly identical fingerprints, and fingerprint generation is robust against manipulation. We evaluate Blacklight on 5 state-of-the-art black-box attacks, across a variety of models and classification tasks. While the most efficient attacks take thousands or tens of thousands of queries to complete, Blacklight identifies them all, often after only a handful of queries. Blacklight is also robust against several powerful countermeasures, including an optimal black-box attack that approximates white-box attacks in efficiency. Finally, Blacklight significantly outperforms the only known alternative in both detection coverage of attack queries and resistance against persistent attackers

    Guessing Smart: Biased Sampling for Efficient Black-Box Adversarial Attacks

    Get PDF
    We consider adversarial examples for image classification in the black-box decision-based setting. Here, an attacker cannot access confidence scores, but only the final label. Most attacks for this scenario are either unreliable or inefficient. Focusing on the latter, we show that a specific class of attacks, Boundary Attacks, can be reinterpreted as a biased sampling framework that gains efficiency from domain knowledge. We identify three such biases, image frequency, regional masks and surrogate gradients, and evaluate their performance against an ImageNet classifier. We show that the combination of these biases outperforms the state of the art by a wide margin. We also showcase an efficient way to attack the Google Cloud Vision API, where we craft convincing perturbations with just a few hundred queries. Finally, the methods we propose have also been found to work very well against strong defenses: Our targeted attack won second place in the NeurIPS 2018 Adversarial Vision Challenge.Comment: For source code and videos, see https://github.com/ttbrunner/biased_boundary_attac

    Mockingbird: Defending Against Deep-Learning-Based Website Fingerprinting Attacks with Adversarial Traces

    Full text link
    Website Fingerprinting (WF) is a type of traffic analysis attack that enables a local passive eavesdropper to infer the victim's activity, even when the traffic is protected by a VPN or an anonymity system like Tor. Leveraging a deep-learning classifier, a WF attacker can gain over 98% accuracy on Tor traffic. In this paper, we explore a novel defense, Mockingbird, based on the idea of adversarial examples that have been shown to undermine machine-learning classifiers in other domains. Since the attacker gets to design and train his attack classifier based on the defense, we first demonstrate that at a straightforward technique for generating adversarial-example based traces fails to protect against an attacker using adversarial training for robust classification. We then propose Mockingbird, a technique for generating traces that resists adversarial training by moving randomly in the space of viable traces and not following more predictable gradients. The technique drops the accuracy of the state-of-the-art attack hardened with adversarial training from 98% to 42-58% while incurring only 58% bandwidth overhead. The attack accuracy is generally lower than state-of-the-art defenses, and much lower when considering Top-2 accuracy, while incurring lower bandwidth overheads.Comment: 18 pages, 13 figures and 8 Tables. Accepted in IEEE Transactions on Information Forensics and Security (TIFS
    • …
    corecore