396 research outputs found

    Accelerator-Aware Pruning for Convolutional Neural Networks

    Full text link
    Convolutional neural networks have shown tremendous performance capabilities in computer vision tasks, but their excessive amounts of weight storage and arithmetic operations prevent them from being adopted in embedded environments. One of the solutions involves pruning, where certain unimportant weights are forced to have a value of zero. Many pruning schemes have been proposed, but these have mainly focused on the number of pruned weights. Previous pruning schemes scarcely considered ASIC or FPGA accelerator architectures. When these pruned networks are run on accelerators, the lack of consideration of the architecture causes some inefficiency problems, including internal buffer misalignments and load imbalances. This paper proposes a new pruning scheme that reflects accelerator architectures. In the proposed scheme, pruning is performed so that the same number of weights remain for each weight group corresponding to activations fetched simultaneously. In this way, the pruning scheme resolves the inefficiency problems, doubling the accelerator performance. Even with this constraint, the proposed pruning scheme reached a pruning ratio similar to that of previous unconstrained pruning schemes, not only on AlexNet and VGG16 but also on state-of-the-art very deep networks such as ResNet. Furthermore, the proposed scheme demonstrated a comparable pruning ratio on compact networks such as MobileNet and on slimmed networks that were already pruned in a channel-wise manner. In addition to improving the efficiency of previous sparse accelerators, it will be also shown that the proposed pruning scheme can be used to reduce the logic complexity of sparse accelerators.The pruned models are publicly available at https://github.com/HyeongjuKang/accelerator-aware-pruning.Comment: 11 pages, 9 figure

    Packing Sparse Convolutional Neural Networks for Efficient Systolic Array Implementations: Column Combining Under Joint Optimization

    Full text link
    This paper describes a novel approach of packing sparse convolutional neural networks for their efficient systolic array implementations. By combining subsets of columns in the original filter matrix associated with a convolutional layer, we increase the utilization efficiency of the systolic array substantially (e.g., ~4x) due to the increased density of nonzeros in the resulting packed filter matrix. In combining columns, for each row, all filter weights but one with the largest magnitude are pruned. We retrain the remaining weights to preserve high accuracy. We demonstrate that in mitigating data privacy concerns the retraining can be accomplished with only fractions of the original dataset (e.g., 10\% for CIFAR-10). We study the effectiveness of this joint optimization for both high utilization and classification accuracy with ASIC and FPGA designs based on efficient bit-serial implementations of multiplier-accumulators. We present analysis and empirical evidence on the superior performance of our column combining approach against prior arts under metrics such as energy efficiency (3x) and inference latency (12x).Comment: To appear in ASPLOS 201

    Neural Network-Hardware Co-design for Scalable RRAM-based BNN Accelerators

    Full text link
    Recently, RRAM-based Binary Neural Network (BNN) hardware has been gaining interests as it requires 1-bit sense-amp only and eliminates the need for high-resolution ADC and DAC. However, RRAM-based BNN hardware still requires high-resolution ADC for partial sum calculation to implement large-scale neural network using multiple memory arrays. We propose a neural network-hardware co-design approach to split input to fit each split network on a RRAM array so that the reconstructed BNNs calculate 1-bit output neuron in each array. As a result, ADC can be completely eliminated from the design even for large-scale neural network. Simulation results show that the proposed network reconstruction and retraining recovers the inference accuracy of the original BNN. The accuracy loss of the proposed scheme in the CIFAR-10 testcase was less than 1.1% compared to the original network. The code for training and running proposed BNN models is available at: https://github.com/YulhwaKim/RRAMScalable_BNN

    ChewBaccaNN: A Flexible 223 TOPS/W BNN Accelerator

    Full text link
    Binary Neural Networks enable smart IoT devices, as they significantly reduce the required memory footprint and computational complexity while retaining a high network performance and flexibility. This paper presents ChewBaccaNN, a 0.7 mm2^2 sized binary convolutional neural network (CNN) accelerator designed in GlobalFoundries 22 nm technology. By exploiting efficient data re-use, data buffering, latch-based memories, and voltage scaling, a throughput of 241 GOPS is achieved while consuming just 1.1 mW at 0.4V/154MHz during inference of binary CNNs with up to 7x7 kernels, leading to a peak core energy efficiency of 223 TOPS/W. ChewBaccaNN's flexibility allows to run a much wider range of binary CNNs than other accelerators, drastically improving the accuracy-energy trade-off beyond what can be captured by the TOPS/W metric. In fact, it can perform CIFAR-10 inference at 86.8% accuracy with merely 1.3 μJ\mu J, thus exceeding the accuracy while at the same time lowering the energy cost by 2.8x compared to even the most efficient and much larger analog processing-in-memory devices, while keeping the flexibility of running larger CNNs for higher accuracy when needed. It also runs a binary ResNet-18 trained on the 1000-class ILSVRC dataset and improves the energy efficiency by 4.4x over accelerators of similar flexibility. Furthermore, it can perform inference on a binarized ResNet-18 trained with 8-bases Group-Net to achieve a 67.5% Top-1 accuracy with only 3.0 mJ/frame -- at an accuracy drop of merely 1.8% from the full-precision ResNet-18.Comment: Accepted at IEEE ISCAS 2021, Daegu, South Korea, 23-26 May 202

    Tartan: Accelerating Fully-Connected and Convolutional Layers in Deep Learning Networks by Exploiting Numerical Precision Variability

    Full text link
    Tartan (TRT), a hardware accelerator for inference with Deep Neural Networks (DNNs), is presented and evaluated on Convolutional Neural Networks. TRT exploits the variable per layer precision requirements of DNNs to deliver execution time that is proportional to the precision p in bits used per layer for convolutional and fully-connected layers. Prior art has demonstrated an accelerator with the same execution performance only for convolutional layers. Experiments on image classification CNNs show that on average across all networks studied, TRT outperforms a state-of-the-art bit-parallel accelerator by 1:90x without any loss in accuracy while it is 1:17x more energy efficient. TRT requires no network retraining while it enables trading off accuracy for additional improvements in execution performance and energy efficiency. For example, if a 1% relative loss in accuracy is acceptable, TRT is on average 2:04x faster and 1:25x more energy efficient than a conventional bit-parallel accelerator. A Tartan configuration that processes 2-bits at time, requires less area than the 1-bit configuration, improves efficiency to 1:24x over the bit-parallel baseline while being 73% faster for convolutional layers and 60% faster for fully-connected layers is also presented

    Precision Highway for Ultra Low-Precision Quantization

    Full text link
    Neural network quantization has an inherent problem called accumulated quantization error, which is the key obstacle towards ultra-low precision, e.g., 2- or 3-bit precision. To resolve this problem, we propose precision highway, which forms an end-to-end high-precision information flow while performing the ultra low-precision computation. First, we describe how the precision highway reduce the accumulated quantization error in both convolutional and recurrent neural networks. We also provide the quantitative analysis of the benefit of precision highway and evaluate the overhead on the state-of-the-art hardware accelerator. In the experiments, our proposed method outperforms the best existing quantization methods while offering 3-bit weight/activation quantization with no accuracy loss and 2-bit quantization with a 2.45 % top-1 accuracy loss in ResNet-50. We also report that the proposed method significantly outperforms the existing method in the 2-bit quantization of an LSTM for language modeling

    Recurrent Residual Module for Fast Inference in Videos

    Full text link
    Deep convolutional neural networks (CNNs) have made impressive progress in many video recognition tasks such as video pose estimation and video object detection. However, CNN inference on video is computationally expensive due to processing dense frames individually. In this work, we propose a framework called Recurrent Residual Module (RRM) to accelerate the CNN inference for video recognition tasks. This framework has a novel design of using the similarity of the intermediate feature maps of two consecutive frames, to largely reduce the redundant computation. One unique property of the proposed method compared to previous work is that feature maps of each frame are precisely computed. The experiments show that, while maintaining the similar recognition performance, our RRM yields averagely 2x acceleration on the commonly used CNNs such as AlexNet, ResNet, deep compression model (thus 8-12x faster than the original dense models using the efficient inference engine), and impressively 9x acceleration on some binary networks such as XNOR-Nets (thus 500x faster than the original model). We further verify the effectiveness of the RRM on speeding up CNNs for video pose estimation and video object detection.Comment: To appear in CVPR 201

    Efficient Hardware Realization of Convolutional Neural Networks using Intra-Kernel Regular Pruning

    Full text link
    The recent trend toward increasingly deep convolutional neural networks (CNNs) leads to a higher demand of computational power and memory storage. Consequently, the deployment of CNNs in hardware has become more challenging. In this paper, we propose an Intra-Kernel Regular (IKR) pruning scheme to reduce the size and computational complexity of the CNNs by removing redundant weights at a fine-grained level. Unlike other pruning methods such as Fine-Grained pruning, IKR pruning maintains regular kernel structures that are exploitable in a hardware accelerator. Experimental results demonstrate up to 10x parameter reduction and 7x computational reduction at a cost of less than 1% degradation in accuracy versus the un-pruned case.Comment: 6 pages, 8 figures, ISMVL 201

    Hardware-oriented Approximation of Convolutional Neural Networks

    Full text link
    High computational complexity hinders the widespread usage of Convolutional Neural Networks (CNNs), especially in mobile devices. Hardware accelerators are arguably the most promising approach for reducing both execution time and power consumption. One of the most important steps in accelerator development is hardware-oriented model approximation. In this paper we present Ristretto, a model approximation framework that analyzes a given CNN with respect to numerical resolution used in representing weights and outputs of convolutional and fully connected layers. Ristretto can condense models by using fixed point arithmetic and representation instead of floating point. Moreover, Ristretto fine-tunes the resulting fixed point network. Given a maximum error tolerance of 1%, Ristretto can successfully condense CaffeNet and SqueezeNet to 8-bit. The code for Ristretto is available.Comment: 8 pages, 4 figures, Accepted as a workshop contribution at ICLR 2016. Updated comparison to other work

    Compressing Low Precision Deep Neural Networks Using Sparsity-Induced Regularization in Ternary Networks

    Full text link
    A low precision deep neural network training technique for producing sparse, ternary neural networks is presented. The technique incorporates hard- ware implementation costs during training to achieve significant model compression for inference. Training involves three stages: network training using L2 regularization and a quantization threshold regularizer, quantization pruning, and finally retraining. Resulting networks achieve improved accuracy, reduced memory footprint and reduced computational complexity compared with conventional methods, on MNIST and CIFAR10 datasets. Our networks are up to 98% sparse and 5 & 11 times smaller than equivalent binary and ternary models, translating to significant resource and speed benefits for hardware implementations.Comment: To appear as a conference paper at the 24th International Conference On Neural Information Processing (ICONIP 2017
    • …
    corecore