2,109 research outputs found

    Decoding of Decode and Forward (DF) Relay Protocol using Min-Sum Based Low Density Parity Check (LDPC) System

    Get PDF
    Decoding high complexity is a major issue to design a decode and forward (DF) relay protocol. Thus, the establishment of low complexity decoding system would beneficial to assist decode and forward relay protocol. This paper reviews existing methods for the min-sum based LDPC decoding system as the low complexity decoding system. Reference lists of chosen articles were further reviewed for associated publications. This paper introduces comprehensive system model representing and describing the methods developed for LDPC based for DF relay protocol. It is consists of a number of components: (1) encoder and modulation at the source node, (2) demodulation, decoding, encoding and modulation at relay node, and (3) demodulation and decoding at the destination node. This paper also proposes a new taxonomy for min-sum based LDPC decoding techniques, highlights some of the most important components such as data used, result performances and profiles the Variable and Check Node (VCN) operation methods that have the potential to be used in DF relay protocol. Min-sum based LDPC decoding methods have the potential to provide an objective measure the best tradeoff between low complexities decoding process and the decoding error performance, and emerge as a cost-effective solution for practical application

    Multiuser MIMO techniques with feedback

    Get PDF
    Kooperative Antennenanlagen haben vor kurzem einen heißen Forschungsthema geworden, da Sie deutlich höhere spektrale Effizienz als herkömmliche zelluläre Systeme versprechen. Der Gewinn wird durch die Eliminierung von Inter-Zelle Störungen (ICI) durch Koordinierung der-Antenne Übertragungen erworben. Vor kurzem, verteilte Organisation Methoden vorgeschlagen. Eine der größten Herausforderungen für das Dezentrale kooperative Antennensystem ist Kanalschätzung für den Downlink Kanal besonders wenn FDD verwendet wird. Alle zugehörigen Basisstationen im genossenschaftlichen Bereich müssen die vollständige Kanal Informationen zu Wissen, die entsprechenden precoding Gewicht Matrix zu berechnen. Diese Information ist von mobilen Stationen übertragen werden Stationen mit Uplink Ressourcen zu stützen. Wird als mehrere Basisstationen und mehreren mobilen Stationen in kooperativen Antennensysteme und jede Basisstation und Mobilstation beteiligt sind, können mit mehreren Antennen ausgestattet sein, die Anzahl der Kanal Parameter wieder gefüttert werden erwartet, groß zu sein. In dieser Arbeit wird ein effizientes Feedback Techniken der downlink Kanal Informationen sind für die Multi-user Multiple Input Multiple Output Fall vorgeschlagen, der insbesondere auf verteilte kooperative Antennensysteme zielt. Zuerst wird ein Unterraum-basiertes Kanalquantisierungsverfahren vorgeschlagen, das ein vorbestimmtes Codebuch verwendet. Ein iterativer Codebuchentwurfsalgorithmus wird vorgeschlagen, der zu einem lokalen optimalen Codebuch konvergiert. Darüber hinaus werden Feedback-Overhead-Reduktionsverfahren entwickelt, die die zeitliche Korrelation des Kanals ausnutzen. Es wird gezeigt, dass das vorgeschlagene adaptive Codebuchverfahren in Verbindung mit einem Datenkomprimierungsschema eine Leistung nahe an dem perfekten Kanalfall erzielt, was viel weniger Rückkopplungsoverhead im Vergleich zu anderen Techniken erfordert. Das auf dem Unterraum basierende Kanalquantisierungsverfahren wird erweitert, indem mehrere Antennen auf der Senderseite und/oder auf der Empfängerseite eingeführt werden, und die Leistung eines Vorcodierungs- (/Decodierungs-) Schemas mit regulierter Blockdiagonalisierung (RBD) wurde untersucht. Es wird ein kosteneffizientes Decodierungsmatrixquantisierungsverfahren vorgeschlagen, dass eine komplexe Berechnung an der Mobilstation vermeiden kann, während es nur eine leichte Verschlechterung zeigt. Die Arbeit wird abgeschlossen, indem die vorgeschlagenen Feedback-Methoden hinsichtlich ihrer Leistung, ihres erforderlichen Feedback-Overheads und ihrer Rechenkomplexität verglichen werden.Cooperative antenna systems have recently become a hot research topic, as they promise significantly higher spectral efficiency than conventional cellular systems. The gain is acquired by eliminating inter-cell interference (ICI) through coordination of the base antenna transmissions. Recently, distributed organization methods have been suggested. One of the main challenges of the distributed cooperative antenna system is channel estimation for the downlink channel especially when FDD is used. All of the associated base stations in the cooperative area need to know the full channel state information to calculate the corresponding precoding weight matrix. This information has to be transferred from mobile stations to base stations by using uplink resources. As several base stations and several mobile stations are involved in cooperative antenna systems and each base station and mobile station may be equipped with multiple antennas, the number of channel state parameters to be fed back is expected to be big. In this thesis, efficient feedback techniques of the downlink channel state information are proposed for the multi-user multiple-input multiple-output case, targeting distributed cooperative antenna systems in particular. First, a subspace based channel quantization method is proposed which employs a predefined codebook. An iterative codebook design algorithm is proposed which converges to a local optimum codebook. Furthermore, feedback overhead reduction methods are devised exploiting temporal correlation of the channel. It is shown that the proposed adaptive codebook method in conjunction with a data compression scheme achieves a performance close to the perfect channel case, requiring much less feedback overhead compared with other techniques. The subspace based channel quantization method is extended by introducing multiple antennas at the transmitter side and/or at the receiver side and the performance of a regularized block diagonalization (RBD) precoding(/decoding) scheme has been investigated as well as a zero-forcing (ZF) precoding scheme. A cost-efficient decoding matrix quantization method is proposed which can avoid a complex computation at the mobile station while showing only a slight degradation. The thesis is concluded by comparing the proposed feedback methods in terms of their performance, their required feedback overhead, and their computational complexity. The techniques that are developed in this thesis can be useful and applicable for 5G, which is envisioned to support the high granularity/resolution codebook and its efficient deployment schemes. Keywords: MU-MIMO, COOPA, limited feedback, CSI, CQ, feedback overhead reduction, Givens rotatio

    Multicast Scheduling and Resource Allocation Algorithms for OFDMA-Based Systems: A Survey

    Get PDF
    Multicasting is emerging as an enabling technology for multimedia transmissions over wireless networks to support several groups of users with flexible quality of service (QoS)requirements. Although multicast has huge potential to push the limits of next generation communication systems; it is however one of the most challenging issues currently being addressed. In this survey, we explain multicast group formation and various forms of group rate determination approaches. We also provide a systematic review of recent channel-aware multicast scheduling and resource allocation (MSRA) techniques proposed for downlink multicast services in OFDMA based systems. We study these enabling algorithms, evaluate their core characteristics, limitations and classify them using multidimensional matrix. We cohesively review the algorithms in terms of their throughput maximization, fairness considerations, performance complexities, multi-antenna support, optimality and simplifying assumptions. We discuss existing standards employing multicasting and further highlight some potential research opportunities in multicast systems
    corecore