12 research outputs found

    A Hybrid Multiobjective Discrete Particle Swarm Optimization Algorithm for Cooperative Air Combat DWTA

    Get PDF

    Real-Time Heuristics and Metaheuristics for Static and Dynamic Weapon Target Assignments

    Get PDF
    The problem of targeting and engaging individual missiles (targets) with an arsenal of interceptors (weapons) is known as the weapon target assignment problem. This problem has been well-researched since the seminal work in 1958. There are two distinct categories of the weapon target assignment problem: static and dynamic. The static weapon target assignment problem considers a single instance in which a known number of incoming missiles is to be engaged with a finite number of interceptors. By contrast, the dynamic weapon target assignment problem considers either follow on engagement(s) should the first engagement(s) fail, a subsequent salvo of incoming missiles, or both. This research seeks to define and solve a realistic dynamic model. First, assignment heuristics and metaheuristics are developed to provide rapid near-optimal solutions to the static weapon target assignment. Next, a technique capable of determining how many of each interceptor type to reserve for a second salvo by means of approximate dynamic programming is developed. Lastly, a model that realistically considers erratic flight paths of incoming missiles and determines assignments and firing sequences of interceptors within a simulation to minimize the number of hits to a protected asset is developed. Additionally, the first contemporary survey of the weapon target assignment problem since 1985 is presented. Collectively, this work extends the research of missile defense into practical application more so than currently is found within the literature

    Approximate Dynamic Programming for Military Resource Allocation

    Get PDF
    This research considers the optimal allocation of weapons to a collection of targets with the objective of maximizing the value of destroyed targets. The weapon-target assignment (WTA) problem is a classic non-linear combinatorial optimization problem with an extensive history in operations research literature. The dynamic weapon target assignment (DWTA) problem aims to assign weapons optimally over time using the information gained to improve the outcome of their engagements. This research investigates various formulations of the DWTA problem and develops algorithms for their solution. Finally, an embedded optimization problem is introduced in which optimization of the multi-stage DWTA is used to determine optimal weaponeering of aircraft. Approximate dynamic programming is applied to the various formulations of the WTA problem. Like many in the field of combinatorial optimization, the DWTA problem suffers from the curses of dimensionality and exact solutions are often computationally intractability. As such, approximations are developed which exploit the special structure of the problem and allow for efficient convergence to high-quality local optima. Finally, a genetic algorithm solution framework is developed to test the embedded optimization problem for aircraft weaponeering

    Determination of Fire Control Policies via Approximate Dynamic Programming

    Get PDF
    Given the ubiquitous nature of both offensive and defensive missile systems, the catastrophe-causing potential they represent, and the limited resources available to countries for missile defense, optimizing the defensive response to a missile attack is a necessary endeavor. For a single salvo of offensive missiles launched at a set of targets, a missile defense system protecting those targets must decide how many interceptors to fire at each incoming missile. Since such missile engagements often involve the firing of more than one attack salvo, we develop a Markov decision process (MDP) model to examine the optimal fire control policy for the defender. Due to the computational intractability of using exact methods for all but the smallest problem instances, we utilize an approximate dynamic programming (ADP) approach to explore the efficacy of applying approximate methods to the problem. We obtain policy insights by analyzing subsets of the state space that reflect a range of possible defender interceptor inventories. Testing of four scenarios demonstrates that the ADP policy provides high-quality decisions for a majority of the state space, achieving a 7.74% mean optimality gap in the baseline scenario. Moreover, computational effort for the ADP algorithm requires only a few minutes versus 12 hours for the exact dynamic programming algorithm, providing a method to address more complex and realistically-sized instances

    An Approximate Dynamic Programming Approach for Comparing Firing Solutions in a Networked Air Defense Environment

    Get PDF
    The United States Army currently employs a shoot-shoot-look firing policy for air defense. As the Army moves to a networked defense-in-depth strategy, this policy will not provide optimal results for managing interceptor inventories in a conflict to minimize the damage to defended assets. The objective for air and missile defense is to identify the firing policy for interceptor allocation that minimizes expected total cost of damage to defended assets. This dynamic weapon target assignment problem is formulated first as a Markov decision process (MDP) and then approximate dynamic programming (ADP) is used to solve problem instances based on a representative scenario. Least squares policy evaluation (LSPE) and least squares temporal difference (LSTD) algorithms are employed to determine the best approximate policies possible. An experimental design is conducted to investigate problem features such as conflict duration, attacker and defender weapon sophistication, and defended asset values. The LSPE and LSTD algorithm results are compared to two benchmark policies (e.g., firing one or two interceptors at each incoming tactical ballistic missile (TBM)). Results indicate that ADP policies outperform baseline polices when conflict duration is short and attacker weapons are sophisticated. Results also indicate that firing one interceptor at each TBM (regardless of inventory status) outperforms the tested ADP policies when conflict duration is long and attacker weapons are less sophisticated

    On the investigation of the large-scale grouping constrained storage location assignment problem

    Get PDF
    The primary focus of this study is a novel optimisation problem, namely Storage Location Assignment Problem with Grouping Constraint (SLAP-GC). The problem stems from real-world applications and is significant in theoretical values and applicability in resource allocation tasks where groupings must be considered. The aim of this problem is to minimise the total operational cost in a warehouse through stock rearrangement. The problem consists of two interdependent subproblems, grouping same product items and assigning items to minimize picking distance. The interactions between these two subproblems make this problem significantly different from previous Storage Location Assignment Problems (SLAP), a well-studied field in logistics. Existing approaches for SLAP are not directly applicable for SLAP-GC. This dissertation lays a foundation for research on grouping constraints and other optimisation problems with similar interactions between subproblems. Firstly this study presents a formal definition of SLAP-GC. Then it others a formal proof of NP-completeness of SLAP-GC by reducing from a well-known 3-Partition problem to SLAP-GC. This suggests that the real-world instances of SLAP-GC should not be tackled with exact approaches, but with approximation and heuristic approaches. Then, we explored decomposition and modelling techniques for SLAP-GC and developed three types of promising heuristic approaches: a hyperheuristic approach, a metaheuristic approach and a matheuristic approach. Comprehensive experimental studies are conducted on both synthetic benchmark instances and real-world instances to examine their efficiency, efficacy, and scalability. Through the analysis of the experimental results, the suitability of proposed methods is verified on various SLAP-GC scenarios. In addition, we demonstrate in this study that with the proposed decomposition, large-scale SLAP-GC can be handled efficiently by the three proposed heuristic-based approaches
    corecore