119,699 research outputs found

    When Hashing Met Matching: Efficient Spatio-Temporal Search for Ridesharing

    Full text link
    Carpooling, or sharing a ride with other passengers, holds immense potential for urban transportation. Ridesharing platforms enable such sharing of rides using real-time data. Finding ride matches in real-time at urban scale is a difficult combinatorial optimization task and mostly heuristic approaches are applied. In this work, we mathematically model the problem as that of finding near-neighbors and devise a novel efficient spatio-temporal search algorithm based on the theory of locality sensitive hashing for Maximum Inner Product Search (MIPS). The proposed algorithm can find kk near-optimal potential matches for every ride from a pool of nn rides in time O(n1+ρ(k+logn)logk)O(n^{1 + \rho} (k + \log n) \log k) and space O(n1+ρlogk)O(n^{1 + \rho} \log k) for a small ρ<1\rho < 1. Our algorithm can be extended in several useful and interesting ways increasing its practical appeal. Experiments with large NY yellow taxi trip datasets show that our algorithm consistently outperforms state-of-the-art heuristic methods thereby proving its practical applicability
    corecore