847 research outputs found

    Attributes of fault-tolerant distributed file systems

    Get PDF
    Fault tolerance in distributed file systems will be investigated by analyzing recovery techniques and concepts implemented within the following models of distributed systems: pool-processor model and user-server model. The research presented provides an overview of fault tolerance characteristics and mechanisms within current implementations and summarizes future directions for fault tolerant distributed file systems

    Low overhead concurrency control for partitioned main memory databases

    Get PDF
    Database partitioning is a technique for improving the performance of distributed OLTP databases, since "single partition" transactions that access data on one partition do not need coordination with other partitions. For workloads that are amenable to partitioning, some argue that transactions should be executed serially on each partition without any concurrency at all. This strategy makes sense for a main memory database where there are no disk or user stalls, since the CPU can be fully utilized and the overhead of traditional concurrency control, such as two-phase locking, can be avoided. Unfortunately, many OLTP applications have some transactions which access multiple partitions. This introduces network stalls in order to coordinate distributed transactions, which will limit the performance of a database that does not allow concurrency. In this paper, we compare two low overhead concurrency control schemes that allow partitions to work on other transactions during network stalls, yet have little cost in the common case when concurrency is not needed. The first is a light-weight locking scheme, and the second is an even lighter-weight type of speculative concurrency control that avoids the overhead of tracking reads and writes, but sometimes performs work that eventually must be undone. We quantify the range of workloads over which each technique is beneficial, showing that speculative concurrency control generally outperforms locking as long as there are few aborts or few distributed transactions that involve multiple rounds of communication. On a modified TPC-C benchmark, speculative concurrency control can improve throughput relative to the other schemes by up to a factor of two.National Science Foundation (U.S.). (Grant number IIS-0704424)National Science Foundation (U.S.). (Grant number IIS-0845643

    A Survey of Traditional and Practical Concurrency Control in Relational Database Management Systems

    Get PDF
    Traditionally, database theory has focused on concepts such as atomicity and serializability, asserting that concurrent transaction management must enable correctness above all else. Textbooks and academic journals detail a vision of unbounded rationality, where reduced throughput because of concurrency protocols is not of tremendous concern. This thesis seeks to survey the traditional basis for concurrency in relational database management systems and contrast that with actual practice. SQL-92, the current standard for concurrency in relational database management systems has defined isolation, or allowable concurrency levels, and these are examined. Some ways in which DB2, a popular database, interprets these levels and finesses extra concurrency through performance enhancement are detailed. SQL-92 standardizes de facto relational database management systems features. Given this and a superabundance of articles in professional journals detailing steps for fine-tuning transaction concurrency, the expansion of performance tuning seems bright, even at the expense of serializabilty. Are the practical changes wrought by non-academic professionals killing traditional database concurrency ideals? Not really. Reasoned changes for performance gains advocate compromise, using complex concurrency controls when necessary for the job at hand and relaxing standards otherwise. The idea of relational database management systems is only twenty years old, and standards are still evolving. Is there still an interplay between tradition and practice? Of course. Current practice uses tradition pragmatically, not idealistically. Academic ideas help drive the systems available for use, and perhaps current practice now will help academic ideas define concurrency control concepts for relational database management systems

    The application of scripts to deadlock avoidance

    Get PDF
    We describe the prototype of an expert system software advisor for the lock manager of a database system. The software advisor, called EAGLE (Expert Advisor for Granting Locks Effectively), is intended to become an embedded expert system within a database management system. EAGLE maintains a record of lock request and lock status within a database management system as an application processes transactions. Eag uses this dynamic lock data to avoid the granting of locks which could lead to a future deadlock. The sequence of lock requests and lock grantings is held as a script(s). EAGLE uses its collected record of lock request sequence to match against stereotypical lock event sequence (script base) and to learn to avoid such sequences in future. As EAGLE gains experience of lock event sequences leading to deadlock it recognises patterns which have led to deadlock, an avoids granting locks which would repeat a previous deadlock-inducing sequence of locks, thereby reducing the occurrence of deadlock. EAGLE treats the deadlock problem as a plan recognition issue rather than a problem resolution issue. We describe the general design of EAGLE, present some results from the EAGLE prototype implementation and discuss planned enhancements to EAGLE

    Concurrent object-oriented programming: The MP-Eiffel approach

    Get PDF
    This article evaluates several possible approaches for integrating concurrency into object-oriented programming languages, presenting afterwards, a new language named MP-Eiffel. MP-Eiffel was designed attempting to include all the essential properties of both concurrent and object-oriented programming with simplicity and safety. A special care was taken to achieve the orthogonality of all the language mechanisms, allowing their joint use without unsafe side-effects (such as inheritance anomalies)

    Real-Time Concurrency Control Protocol Based on Accessing Temporal Data

    Get PDF

    Exploiting semantic commutativity in hardware speculation

    Get PDF
    Hardware speculative execution schemes such as hardware transactional memory (HTM) enjoy low run-time overheads but suffer from limited concurrency because they rely on reads and writes to detect conflicts. By contrast, software speculation schemes can exploit semantic knowledge of concurrent operations to reduce conflicts. In particular, they often exploit that many operations on shared data, like insertions into sets, are semantically commutative: they produce semantically equivalent results when reordered. However, software techniques often incur unacceptable run-time overheads. To solve this dichotomy, we present COMMTM, an HTM that exploits semantic commutativity. CommTM extends the coherence protocol and conflict detection scheme to support user-defined commutative operations. Multiple cores can perform commutative operations to the same data concurrently and without conflicts. CommTM preserves transactional guarantees and can be applied to arbitrary HTMs. CommTM scales on many operations that serialize in conventional HTMs, like set insertions, reference counting, and top-K insertions, and retains the low overhead of HTMs. As a result, at 128 cores, CommTM outperforms a conventional eager-lazy HTM by up to 3.4 χ and reduces or eliminates aborts.National Science Foundation (U.S.) (Grant CAREER-1452994
    corecore