6,709 research outputs found

    The Dynamics of Vehicular Networks in Urban Environments

    Full text link
    Vehicular Ad hoc NETworks (VANETs) have emerged as a platform to support intelligent inter-vehicle communication and improve traffic safety and performance. The road-constrained, high mobility of vehicles, their unbounded power source, and the emergence of roadside wireless infrastructures make VANETs a challenging research topic. A key to the development of protocols for inter-vehicle communication and services lies in the knowledge of the topological characteristics of the VANET communication graph. This paper explores the dynamics of VANETs in urban environments and investigates the impact of these findings in the design of VANET routing protocols. Using both real and realistic mobility traces, we study the networking shape of VANETs under different transmission and market penetration ranges. Given that a number of RSUs have to be deployed for disseminating information to vehicles in an urban area, we also study their impact on vehicular connectivity. Through extensive simulations we investigate the performance of VANET routing protocols by exploiting the knowledge of VANET graphs analysis.Comment: Revised our testbed with even more realistic mobility traces. Used the location of real Wi-Fi hotspots to simulate RSUs in our study. Used a larger, real mobility trace set, from taxis in Shanghai. Examine the implications of our findings in the design of VANET routing protocols by implementing in ns-3 two routing protocols (GPCR & VADD). Updated the bibliography section with new research work

    Hybrid-Vehfog: A Robust Approach for Reliable Dissemination of Critical Messages in Connected Vehicles

    Full text link
    Vehicular Ad-hoc Networks (VANET) enable efficient communication between vehicles with the aim of improving road safety. However, the growing number of vehicles in dense regions and obstacle shadowing regions like Manhattan and other downtown areas leads to frequent disconnection problems resulting in disrupted radio wave propagation between vehicles. To address this issue and to transmit critical messages between vehicles and drones deployed from service vehicles to overcome road incidents and obstacles, we proposed a hybrid technique based on fog computing called Hybrid-Vehfog to disseminate messages in obstacle shadowing regions, and multi-hop technique to disseminate messages in non-obstacle shadowing regions. Our proposed algorithm dynamically adapts to changes in an environment and benefits in efficiency with robust drone deployment capability as needed. Performance of Hybrid-Vehfog is carried out in Network Simulator (NS-2) and Simulation of Urban Mobility (SUMO) simulators. The results showed that Hybrid-Vehfog outperformed Cloud-assisted Message Downlink Dissemination Scheme (CMDS), Cross-Layer Broadcast Protocol (CLBP), PEer-to-Peer protocol for Allocated REsource (PrEPARE), Fog-Named Data Networking (NDN) with mobility, and flooding schemes at all vehicle densities and simulation times

    iTETRIS: An Integrated Wireless and Traffic Platform for Real-Time Road Traffic Management Solutions

    Get PDF
    Wireless vehicular cooperative systems have been identified as an attractive solution to improve road traffic management, thereby contributing to the European goal of safer, cleaner, and more efficient and sustainable traffic solutions. V2V-V2I communication technologies can improve traffic management through real-time exchange of data among vehicles and with road infrastructure. It is also of great importance to investigate the adequate combination of V2V and V2I technologies to ensure the continuous and costefficient operation of traffic management solutions based on wireless vehicular cooperative solutions. However, to adequately design and optimize these communication protocols and analyze the potential of wireless vehicular cooperative systems to improve road traffic management, adequate testbeds and field operational tests need to be conducted. Despite the potential of Field Operational Tests to get the first insights into the benefits and problems faced in the development of wireless vehicular cooperative systems, there is yet the need to evaluate in the long term and large dimension the true potential benefits of wireless vehicular cooperative systems to improve traffic efficiency. To this aim, iTETRIS is devoted to the development of advanced tools coupling traffic and wireless communication simulators

    Evaluation study of IEEE 1609.4 performance for safety and non-safety messages dissemination

    Get PDF
    The IEEE 1609.4 was developed to support multi-channel operation and channel switching procedure in order to provide both safety and non-safety vehicular applications. However, this protocol has some drawback because it does not make efficient usage of channel bandwidth resources for single radio WAVE devices and suffer from high bounded delay and lost packet especially for large-scale networks in terms of the number of active nodes. This paper evaluates IEEE 1609.4 multi-channel protocol performance for safety and non-safety application and compare it with the IEEE 802.11p single channel protocol. Multi-channel and single channel protocols are analyzed in different environments to investigate their performance. By relying on a realistic dataset and using OMNeT++ simulation tool as network simulator, SUMO as traffic simulator and coupling them by employing Veins framework. Performance evaluation results show that the delay of single channel protocol IEEE 802.11p has been degraded 36% compared with multi-channel protocol

    DFCV: A Novel Approach for Message Dissemination in Connected Vehicles using Dynamic Fog

    Full text link
    Vehicular Ad-hoc Network (VANET) has emerged as a promising solution for enhancing road safety. Routing of messages in VANET is challenging due to packet delays arising from high mobility of vehicles, frequently changing topology, and high density of vehicles, leading to frequent route breakages and packet losses. Previous researchers have used either mobility in vehicular fog computing or cloud computing to solve the routing issue, but they suffer from large packet delays and frequent packet losses. We propose Dynamic Fog for Connected Vehicles (DFCV), a fog computing based scheme which dynamically creates, increments and destroys fog nodes depending on the communication needs. The novelty of DFCV lies in providing lower delays and guaranteed message delivery at high vehicular densities. Simulations were conducted using hybrid simulation consisting of ns-2, SUMO, and Cloudsim. Results show that DFCV ensures efficient resource utilization, lower packet delays and losses at high vehicle densities
    • …
    corecore