1,168 research outputs found

    A Field Guide to Genetic Programming

    Get PDF
    xiv, 233 p. : il. ; 23 cm.Libro ElectrónicoA Field Guide to Genetic Programming (ISBN 978-1-4092-0073-4) is an introduction to genetic programming (GP). GP is a systematic, domain-independent method for getting computers to solve problems automatically starting from a high-level statement of what needs to be done. Using ideas from natural evolution, GP starts from an ooze of random computer programs, and progressively refines them through processes of mutation and sexual recombination, until solutions emerge. All this without the user having to know or specify the form or structure of solutions in advance. GP has generated a plethora of human-competitive results and applications, including novel scientific discoveries and patentable inventions. The authorsIntroduction -- Representation, initialisation and operators in Tree-based GP -- Getting ready to run genetic programming -- Example genetic programming run -- Alternative initialisations and operators in Tree-based GP -- Modular, grammatical and developmental Tree-based GP -- Linear and graph genetic programming -- Probalistic genetic programming -- Multi-objective genetic programming -- Fast and distributed genetic programming -- GP theory and its applications -- Applications -- Troubleshooting GP -- Conclusions.Contents xi 1 Introduction 1.1 Genetic Programming in a Nutshell 1.2 Getting Started 1.3 Prerequisites 1.4 Overview of this Field Guide I Basics 2 Representation, Initialisation and GP 2.1 Representation 2.2 Initialising the Population 2.3 Selection 2.4 Recombination and Mutation Operators in Tree-based 3 Getting Ready to Run Genetic Programming 19 3.1 Step 1: Terminal Set 19 3.2 Step 2: Function Set 20 3.2.1 Closure 21 3.2.2 Sufficiency 23 3.2.3 Evolving Structures other than Programs 23 3.3 Step 3: Fitness Function 24 3.4 Step 4: GP Parameters 26 3.5 Step 5: Termination and solution designation 27 4 Example Genetic Programming Run 4.1 Preparatory Steps 29 4.2 Step-by-Step Sample Run 31 4.2.1 Initialisation 31 4.2.2 Fitness Evaluation Selection, Crossover and Mutation Termination and Solution Designation Advanced Genetic Programming 5 Alternative Initialisations and Operators in 5.1 Constructing the Initial Population 5.1.1 Uniform Initialisation 5.1.2 Initialisation may Affect Bloat 5.1.3 Seeding 5.2 GP Mutation 5.2.1 Is Mutation Necessary? 5.2.2 Mutation Cookbook 5.3 GP Crossover 5.4 Other Techniques 32 5.5 Tree-based GP 39 6 Modular, Grammatical and Developmental Tree-based GP 47 6.1 Evolving Modular and Hierarchical Structures 47 6.1.1 Automatically Defined Functions 48 6.1.2 Program Architecture and Architecture-Altering 50 6.2 Constraining Structures 51 6.2.1 Enforcing Particular Structures 52 6.2.2 Strongly Typed GP 52 6.2.3 Grammar-based Constraints 53 6.2.4 Constraints and Bias 55 6.3 Developmental Genetic Programming 57 6.4 Strongly Typed Autoconstructive GP with PushGP 59 7 Linear and Graph Genetic Programming 61 7.1 Linear Genetic Programming 61 7.1.1 Motivations 61 7.1.2 Linear GP Representations 62 7.1.3 Linear GP Operators 64 7.2 Graph-Based Genetic Programming 65 7.2.1 Parallel Distributed GP (PDGP) 65 7.2.2 PADO 67 7.2.3 Cartesian GP 67 7.2.4 Evolving Parallel Programs using Indirect Encodings 68 8 Probabilistic Genetic Programming 8.1 Estimation of Distribution Algorithms 69 8.2 Pure EDA GP 71 8.3 Mixing Grammars and Probabilities 74 9 Multi-objective Genetic Programming 75 9.1 Combining Multiple Objectives into a Scalar Fitness Function 75 9.2 Keeping the Objectives Separate 76 9.2.1 Multi-objective Bloat and Complexity Control 77 9.2.2 Other Objectives 78 9.2.3 Non-Pareto Criteria 80 9.3 Multiple Objectives via Dynamic and Staged Fitness Functions 80 9.4 Multi-objective Optimisation via Operator Bias 81 10 Fast and Distributed Genetic Programming 83 10.1 Reducing Fitness Evaluations/Increasing their Effectiveness 83 10.2 Reducing Cost of Fitness with Caches 86 10.3 Parallel and Distributed GP are Not Equivalent 88 10.4 Running GP on Parallel Hardware 89 10.4.1 Master–slave GP 89 10.4.2 GP Running on GPUs 90 10.4.3 GP on FPGAs 92 10.4.4 Sub-machine-code GP 93 10.5 Geographically Distributed GP 93 11 GP Theory and its Applications 97 11.1 Mathematical Models 98 11.2 Search Spaces 99 11.3 Bloat 101 11.3.1 Bloat in Theory 101 11.3.2 Bloat Control in Practice 104 III Practical Genetic Programming 12 Applications 12.1 Where GP has Done Well 12.2 Curve Fitting, Data Modelling and Symbolic Regression 12.3 Human Competitive Results – the Humies 12.4 Image and Signal Processing 12.5 Financial Trading, Time Series, and Economic Modelling 12.6 Industrial Process Control 12.7 Medicine, Biology and Bioinformatics 12.8 GP to Create Searchers and Solvers – Hyper-heuristics xiii 12.9 Entertainment and Computer Games 127 12.10The Arts 127 12.11Compression 128 13 Troubleshooting GP 13.1 Is there a Bug in the Code? 13.2 Can you Trust your Results? 13.3 There are No Silver Bullets 13.4 Small Changes can have Big Effects 13.5 Big Changes can have No Effect 13.6 Study your Populations 13.7 Encourage Diversity 13.8 Embrace Approximation 13.9 Control Bloat 13.10 Checkpoint Results 13.11 Report Well 13.12 Convince your Customers 14 Conclusions Tricks of the Trade A Resources A.1 Key Books A.2 Key Journals A.3 Key International Meetings A.4 GP Implementations A.5 On-Line Resources 145 B TinyGP 151 B.1 Overview of TinyGP 151 B.2 Input Data Files for TinyGP 153 B.3 Source Code 154 B.4 Compiling and Running TinyGP 162 Bibliography 167 Inde

    Evolutionary Algorithms in Engineering Design Optimization

    Get PDF
    Evolutionary algorithms (EAs) are population-based global optimizers, which, due to their characteristics, have allowed us to solve, in a straightforward way, many real world optimization problems in the last three decades, particularly in engineering fields. Their main advantages are the following: they do not require any requisite to the objective/fitness evaluation function (continuity, derivability, convexity, etc.); they are not limited by the appearance of discrete and/or mixed variables or by the requirement of uncertainty quantification in the search. Moreover, they can deal with more than one objective function simultaneously through the use of evolutionary multi-objective optimization algorithms. This set of advantages, and the continuously increased computing capability of modern computers, has enhanced their application in research and industry. From the application point of view, in this Special Issue, all engineering fields are welcomed, such as aerospace and aeronautical, biomedical, civil, chemical and materials science, electronic and telecommunications, energy and electrical, manufacturing, logistics and transportation, mechanical, naval architecture, reliability, robotics, structural, etc. Within the EA field, the integration of innovative and improvement aspects in the algorithms for solving real world engineering design problems, in the abovementioned application fields, are welcomed and encouraged, such as the following: parallel EAs, surrogate modelling, hybridization with other optimization techniques, multi-objective and many-objective optimization, etc

    Design Techniques for Energy-Quality Scalable Digital Systems

    Get PDF
    Energy efficiency is one of the key design goals in modern computing. Increasingly complex tasks are being executed in mobile devices and Internet of Things end-nodes, which are expected to operate for long time intervals, in the orders of months or years, with the limited energy budgets provided by small form-factor batteries. Fortunately, many of such tasks are error resilient, meaning that they can toler- ate some relaxation in the accuracy, precision or reliability of internal operations, without a significant impact on the overall output quality. The error resilience of an application may derive from a number of factors. The processing of analog sensor inputs measuring quantities from the physical world may not always require maximum precision, as the amount of information that can be extracted is limited by the presence of external noise. Outputs destined for human consumption may also contain small or occasional errors, thanks to the limited capabilities of our vision and hearing systems. Finally, some computational patterns commonly found in domains such as statistics, machine learning and operational research, naturally tend to reduce or eliminate errors. Energy-Quality (EQ) scalable digital systems systematically trade off the quality of computations with energy efficiency, by relaxing the precision, the accuracy, or the reliability of internal software and hardware components in exchange for energy reductions. This design paradigm is believed to offer one of the most promising solutions to the impelling need for low-energy computing. Despite these high expectations, the current state-of-the-art in EQ scalable design suffers from important shortcomings. First, the great majority of techniques proposed in literature focus only on processing hardware and software components. Nonetheless, for many real devices, processing contributes only to a small portion of the total energy consumption, which is dominated by other components (e.g. I/O, memory or data transfers). Second, in order to fulfill its promises and become diffused in commercial devices, EQ scalable design needs to achieve industrial level maturity. This involves moving from purely academic research based on high-level models and theoretical assumptions to engineered flows compatible with existing industry standards. Third, the time-varying nature of error tolerance, both among different applications and within a single task, should become more central in the proposed design methods. This involves designing “dynamic” systems in which the precision or reliability of operations (and consequently their energy consumption) can be dynamically tuned at runtime, rather than “static” solutions, in which the output quality is fixed at design-time. This thesis introduces several new EQ scalable design techniques for digital systems that take the previous observations into account. Besides processing, the proposed methods apply the principles of EQ scalable design also to interconnects and peripherals, which are often relevant contributors to the total energy in sensor nodes and mobile systems respectively. Regardless of the target component, the presented techniques pay special attention to the accurate evaluation of benefits and overheads deriving from EQ scalability, using industrial-level models, and on the integration with existing standard tools and protocols. Moreover, all the works presented in this thesis allow the dynamic reconfiguration of output quality and energy consumption. More specifically, the contribution of this thesis is divided in three parts. In a first body of work, the design of EQ scalable modules for processing hardware data paths is considered. Three design flows are presented, targeting different technologies and exploiting different ways to achieve EQ scalability, i.e. timing-induced errors and precision reduction. These works are inspired by previous approaches from the literature, namely Reduced-Precision Redundancy and Dynamic Accuracy Scaling, which are re-thought to make them compatible with standard Electronic Design Automation (EDA) tools and flows, providing solutions to overcome their main limitations. The second part of the thesis investigates the application of EQ scalable design to serial interconnects, which are the de facto standard for data exchanges between processing hardware and sensors. In this context, two novel bus encodings are proposed, called Approximate Differential Encoding and Serial-T0, that exploit the statistical characteristics of data produced by sensors to reduce the energy consumption on the bus at the cost of controlled data approximations. The two techniques achieve different results for data of different origins, but share the common features of allowing runtime reconfiguration of the allowed error and being compatible with standard serial bus protocols. Finally, the last part of the manuscript is devoted to the application of EQ scalable design principles to displays, which are often among the most energy- hungry components in mobile systems. The two proposals in this context leverage the emissive nature of Organic Light-Emitting Diode (OLED) displays to save energy by altering the displayed image, thus inducing an output quality reduction that depends on the amount of such alteration. The first technique implements an image-adaptive form of brightness scaling, whose outputs are optimized in terms of balance between power consumption and similarity with the input. The second approach achieves concurrent power reduction and image enhancement, by means of an adaptive polynomial transformation. Both solutions focus on minimizing the overheads associated with a real-time implementation of the transformations in software or hardware, so that these do not offset the savings in the display. For each of these three topics, results show that the aforementioned goal of building EQ scalable systems compatible with existing best practices and mature for being integrated in commercial devices can be effectively achieved. Moreover, they also show that very simple and similar principles can be applied to design EQ scalable versions of different system components (processing, peripherals and I/O), and to equip these components with knobs for the runtime reconfiguration of the energy versus quality tradeoff

    Evolutionary design of digital VLSI hardware

    Get PDF

    Advanced meta-heuristic approaches and their application to operational optimization in forest wildfire management

    Get PDF
    La última década ha sido testigo de un aumento vertiginoso de la cantidad y frecuencia de desastres a gran escala, principalmente debido a los fenómenos devastadores derivados de paradigmas climatológicos y ambientales a gran escala como el calentamiento global. De entre ellos son las inundaciones, huracanes y terremotos los desastres de mayor frecuencia de aparición y fatales consecuencias durante este período, tal como certifican los más de 20.000 muertos a consecuencia de un terremoto en la región de Gujarat (India) en 2001, o las 230.000 y 316.000 pérdidas humanas de los terremotos de Indonesia y Haití en 2004 y 2010, respectivamente. En este contexto, el enfoque de esta tesis se centra en una casuística concreta de desastre a media-gran escala cuya frecuencia y severidad han crecido de manera igualmente preocupante en los últimos tiempos: los incendios, definidos como un fuego de grandes dimensiones no voluntariamente iniciado por el ser humano, y que afecta a aquello que no está destinado a quemarse. Pese a la diversidad de iniciativas, campañas y procedimientos orientados a la minimización del impacto y las consecuencias de los incendios, varios sucesos fatales acontecidos en los últimos años han puesto en duda la efectividad de las políticas actuales de gestión de recursos contra incendios como aeronaves, vehículos terrestres, equipamiento de comunicaciones radio, logística de abastecimiento y las brigadas desplegadas en el área afectada. Un ejemplo manifiesto de esta falta de eficacia es la muerte de once bomberos ocurrida en un incendio de 130 kilómetros cuadrados en la zona de Guadalajara (España) en 2005, oficialmente atribuida a una deficiente coordinación entre el puesto de mando y los equipos de extinción debida, fundamentalmente, a problemas de cobertura en los sistemas de radiocomunicación. Aunque la causa de esta falta de coordinación ha sido cuestionada por las autoridades y los agentes involucrados desde entonces, lo cierto es que este suceso supone un ejemplo evidente de la necesidad de estudiar y desarrollar herramientas algorítmicas que ayuden al personal de comandancia a ejecutar óptimamente sus tareas de coordinación y control. Desafortunadamente la coyuntura de crisis económica mundial que azota con especial fuerza los países del Sur de Europa ha mermado dramáticamente las partidas presupuestarias para la prevención y extinción de incendios en beneficio de programas nacionales de reducción de déficit. A consecuencia de estos recortes, el coste ha irrumpido con fuerza como un criterio de extrema relevancia en la planificación operativa de este tipo de desastres: desde la perspectiva de un problema de optimización, los recursos contra incendios son actualmente gestionados con el objetivo fundamental de maximizar su efectividad contra incendios, sujeto a la restricción de que el coste agregado asociado a las decisiones tomadas no supere un determinado umbral presupuestario. Pese a que estas restricciones de coste están bien acotadas, en la práctica la mayoría de los procedimientos de gestión de recursos contra incendios están fuertemente determinados por la capacidad limitada del ser humano para tomar decisiones ágiles en escenarios de elevada complejidad y heterogeneidad. Por los motivos anteriormente expuestos, la presente Tesis doctoral propone la adopción de algoritmos meta-heurísticos para solventar eficientemente problemas de optimización que modelan procesos de gestión de recursos contra incendios. Esta familia de algoritmos de optimización es capaz de explorar el espacio solución de un problema dado merced a la aplicación iterativa de mecanismos inteligentes de búsqueda explorativa y explotativa, produciendo soluciones que sacrifican calidad por una complejidad computacional menor en comparación con la resultante de procesos determinísticos de búsqueda exhaustiva. En particular la Tesis plantea la búsqueda por harmonía (del inglés Harmony Search) como la técnica meta-heurística de optimización común a las herramientas diseñadas para la gestión de recursos en dos escenarios diferentes: ? El primer escenario analizado contempla el despliegue óptimo de redes de comunicación inalámbrica para la coordinación de equipos de extinción en incendios forestales de gran escala. Desde el punto de vista formal, el problema del despliegue dinámico de retransmisores que caracteriza matemáticamente este escenario consiste en estimar el número y localización de los retransmisores radio que deben ser desplegados en el área afectada por el incendio, de tal modo que el número de nodos móviles (i.e. recursos) con cobertura radio es maximizado a un coste del despliegue mínimo. A fin de reflejar la diversidad de equipamiento de retransmisión radio existente en la realidad, este problema es reformulado para considerar modelos de retransmisor con diferentes características de cobertura y coste. El problema resultante es resuelto de manera eficiente mediante sendos algoritmos mono- y bi-objetivo que conjugan 1) la Búsqueda por Harmonía como método de búsqueda global; y 2) una versión modificada del algoritmo de agrupación K-means como técnica de búsqueda local. El desempeño de los métodos propuestos es evaluado mediante experimentos numéricos basados en datos estadísticos reales de la Comunidad de Castilla la Mancha (España), merced a cuyos resultados queda certificada su practicidad a la hora de desplegar infraestructura de comunicación en este tipo de desastres. ? El segundo escenario bajo estudio se concentra en el despliegue y planificación óptima de vehículos aéreos de extinción de incendios basados en estimaciones predictivas del riesgo de incendio de una cierta área geográfica. De manera enunciativa, el problema subyacente busca la asignación de recursos a aeródromos y aeropuertos con restricciones de capacidad que maximice la utilidad de dichos recursos en relación al riesgo de incendio y minimice, a su vez, el coste de ejecutar dicha asignación. La formulación de este problema también considera, dentro de la definición de dicha función de utilidad, la distancia relativa entre aeropuerto, punto de potencial riesgo de incendio y el recurso acuífero (lago, río o mar) más cercano. Para su resolución eficiente se propone el uso de algoritmos de optimización basados, de nuevo, en la Búsqueda por Harmonía, incorporando además métodos voraces de reparación capacitiva. La aplicabilidad práctica de estos métodos es validada mediante experimentos numéricos en escenarios sintéticos y un caso práctico que incluye valores reales del riesgo de incendio, posiciones de recursos acuíferos e instalaciones aeroportuarias. En resumen, esta Tesis evidencia, desde un punto de vista práctico, que la meta-heurística moderna supone una solución algorítmica computacionalmente eficiente para tratar problemas de gestión de recursos contra incendios sujetos a restricciones de coste

    Autonomous Recovery Of Reconfigurable Logic Devices Using Priority Escalation Of Slack

    Get PDF
    Field Programmable Gate Array (FPGA) devices offer a suitable platform for survivable hardware architectures in mission-critical systems. In this dissertation, active dynamic redundancy-based fault-handling techniques are proposed which exploit the dynamic partial reconfiguration capability of SRAM-based FPGAs. Self-adaptation is realized by employing reconfiguration in detection, diagnosis, and recovery phases. To extend these concepts to semiconductor aging and process variation in the deep submicron era, resilient adaptable processing systems are sought to maintain quality and throughput requirements despite the vulnerabilities of the underlying computational devices. A new approach to autonomous fault-handling which addresses these goals is developed using only a uniplex hardware arrangement. It operates by observing a health metric to achieve Fault Demotion using Recon- figurable Slack (FaDReS). Here an autonomous fault isolation scheme is employed which neither requires test vectors nor suspends the computational throughput, but instead observes the value of a health metric based on runtime input. The deterministic flow of the fault isolation scheme guarantees success in a bounded number of reconfigurations of the FPGA fabric. FaDReS is then extended to the Priority Using Resource Escalation (PURE) online redundancy scheme which considers fault-isolation latency and throughput trade-offs under a dynamic spare arrangement. While deep-submicron designs introduce new challenges, use of adaptive techniques are seen to provide several promising avenues for improving resilience. The scheme developed is demonstrated by hardware design of various signal processing circuits and their implementation on a Xilinx Virtex-4 FPGA device. These include a Discrete Cosine Transform (DCT) core, Motion Estimation (ME) engine, Finite Impulse Response (FIR) Filter, Support Vector Machine (SVM), and Advanced Encryption Standard (AES) blocks in addition to MCNC benchmark circuits. A iii significant reduction in power consumption is achieved ranging from 83% for low motion-activity scenes to 12.5% for high motion activity video scenes in a novel ME engine configuration. For a typical benchmark video sequence, PURE is shown to maintain a PSNR baseline near 32dB. The diagnosability, reconfiguration latency, and resource overhead of each approach is analyzed. Compared to previous alternatives, PURE maintains a PSNR within a difference of 4.02dB to 6.67dB from the fault-free baseline by escalating healthy resources to higher-priority signal processing functions. The results indicate the benefits of priority-aware resiliency over conventional redundancy approaches in terms of fault-recovery, power consumption, and resource-area requirements. Together, these provide a broad range of strategies to achieve autonomous recovery of reconfigurable logic devices under a variety of constraints, operating conditions, and optimization criteria

    Advanced meta-heuristic approaches and their application to operational optimization in forest wildfire management

    Get PDF
    La última década ha sido testigo de un aumento vertiginoso de la cantidad y frecuencia de desastres a gran escala, principalmente debido a los fenómenos devastadores derivados de paradigmas climatológicos y ambientales a gran escala como el calentamiento global. De entre ellos son las inundaciones, huracanes y terremotos los desastres de mayor frecuencia de aparición y fatales consecuencias durante este período, tal como certifican los más de 20.000 muertos a consecuencia de un terremoto en la región de Gujarat (India) en 2001, o las 230.000 y 316.000 pérdidas humanas de los terremotos de Indonesia y Haití en 2004 y 2010, respectivamente. En este contexto, el enfoque de esta tesis se centra en una casuística concreta de desastre a media-gran escala cuya frecuencia y severidad han crecido de manera igualmente preocupante en los últimos tiempos: los incendios, definidos como un fuego de grandes dimensiones no voluntariamente iniciado por el ser humano, y que afecta a aquello que no está destinado a quemarse. Pese a la diversidad de iniciativas, campañas y procedimientos orientados a la minimización del impacto y las consecuencias de los incendios, varios sucesos fatales acontecidos en los últimos años han puesto en duda la efectividad de las políticas actuales de gestión de recursos contra incendios como aeronaves, vehículos terrestres, equipamiento de comunicaciones radio, logística de abastecimiento y las brigadas desplegadas en el área afectada. Un ejemplo manifiesto de esta falta de eficacia es la muerte de once bomberos ocurrida en un incendio de 130 kilómetros cuadrados en la zona de Guadalajara (España) en 2005, oficialmente atribuida a una deficiente coordinación entre el puesto de mando y los equipos de extinción debida, fundamentalmente, a problemas de cobertura en los sistemas de radiocomunicación. Aunque la causa de esta falta de coordinación ha sido cuestionada por las autoridades y los agentes involucrados desde entonces, lo cierto es que este suceso supone un ejemplo evidente de la necesidad de estudiar y desarrollar herramientas algorítmicas que ayuden al personal de comandancia a ejecutar óptimamente sus tareas de coordinación y control. Desafortunadamente la coyuntura de crisis económica mundial que azota con especial fuerza los países del Sur de Europa ha mermado dramáticamente las partidas presupuestarias para la prevención y extinción de incendios en beneficio de programas nacionales de reducción de déficit. A consecuencia de estos recortes, el coste ha irrumpido con fuerza como un criterio de extrema relevancia en la planificación operativa de este tipo de desastres: desde la perspectiva de un problema de optimización, los recursos contra incendios son actualmente gestionados con el objetivo fundamental de maximizar su efectividad contra incendios, sujeto a la restricción de que el coste agregado asociado a las decisiones tomadas no supere un determinado umbral presupuestario. Pese a que estas restricciones de coste están bien acotadas, en la práctica la mayoría de los procedimientos de gestión de recursos contra incendios están fuertemente determinados por la capacidad limitada del ser humano para tomar decisiones ágiles en escenarios de elevada complejidad y heterogeneidad. Por los motivos anteriormente expuestos, la presente Tesis doctoral propone la adopción de algoritmos meta-heurísticos para solventar eficientemente problemas de optimización que modelan procesos de gestión de recursos contra incendios. Esta familia de algoritmos de optimización es capaz de explorar el espacio solución de un problema dado merced a la aplicación iterativa de mecanismos inteligentes de búsqueda explorativa y explotativa, produciendo soluciones que sacrifican calidad por una complejidad computacional menor en comparación con la resultante de procesos determinísticos de búsqueda exhaustiva. En particular la Tesis plantea la búsqueda por harmonía (del inglés Harmony Search) como la técnica meta-heurística de optimización común a las herramientas diseñadas para la gestión de recursos en dos escenarios diferentes: ? El primer escenario analizado contempla el despliegue óptimo de redes de comunicación inalámbrica para la coordinación de equipos de extinción en incendios forestales de gran escala. Desde el punto de vista formal, el problema del despliegue dinámico de retransmisores que caracteriza matemáticamente este escenario consiste en estimar el número y localización de los retransmisores radio que deben ser desplegados en el área afectada por el incendio, de tal modo que el número de nodos móviles (i.e. recursos) con cobertura radio es maximizado a un coste del despliegue mínimo. A fin de reflejar la diversidad de equipamiento de retransmisión radio existente en la realidad, este problema es reformulado para considerar modelos de retransmisor con diferentes características de cobertura y coste. El problema resultante es resuelto de manera eficiente mediante sendos algoritmos mono- y bi-objetivo que conjugan 1) la Búsqueda por Harmonía como método de búsqueda global; y 2) una versión modificada del algoritmo de agrupación K-means como técnica de búsqueda local. El desempeño de los métodos propuestos es evaluado mediante experimentos numéricos basados en datos estadísticos reales de la Comunidad de Castilla la Mancha (España), merced a cuyos resultados queda certificada su practicidad a la hora de desplegar infraestructura de comunicación en este tipo de desastres. ? El segundo escenario bajo estudio se concentra en el despliegue y planificación óptima de vehículos aéreos de extinción de incendios basados en estimaciones predictivas del riesgo de incendio de una cierta área geográfica. De manera enunciativa, el problema subyacente busca la asignación de recursos a aeródromos y aeropuertos con restricciones de capacidad que maximice la utilidad de dichos recursos en relación al riesgo de incendio y minimice, a su vez, el coste de ejecutar dicha asignación. La formulación de este problema también considera, dentro de la definición de dicha función de utilidad, la distancia relativa entre aeropuerto, punto de potencial riesgo de incendio y el recurso acuífero (lago, río o mar) más cercano. Para su resolución eficiente se propone el uso de algoritmos de optimización basados, de nuevo, en la Búsqueda por Harmonía, incorporando además métodos voraces de reparación capacitiva. La aplicabilidad práctica de estos métodos es validada mediante experimentos numéricos en escenarios sintéticos y un caso práctico que incluye valores reales del riesgo de incendio, posiciones de recursos acuíferos e instalaciones aeroportuarias. En resumen, esta Tesis evidencia, desde un punto de vista práctico, que la meta-heurística moderna supone una solución algorítmica computacionalmente eficiente para tratar problemas de gestión de recursos contra incendios sujetos a restricciones de coste

    Information Bottleneck

    Get PDF
    The celebrated information bottleneck (IB) principle of Tishby et al. has recently enjoyed renewed attention due to its application in the area of deep learning. This collection investigates the IB principle in this new context. The individual chapters in this collection: • provide novel insights into the functional properties of the IB; • discuss the IB principle (and its derivates) as an objective for training multi-layer machine learning structures such as neural networks and decision trees; and • offer a new perspective on neural network learning via the lens of the IB framework. Our collection thus contributes to a better understanding of the IB principle specifically for deep learning and, more generally, of information–theoretic cost functions in machine learning. This paves the way toward explainable artificial intelligence
    corecore