53,960 research outputs found

    Cross-layer design of multi-hop wireless networks

    Get PDF
    MULTI -hop wireless networks are usually defined as a collection of nodes equipped with radio transmitters, which not only have the capability to communicate each other in a multi-hop fashion, but also to route each others’ data packets. The distributed nature of such networks makes them suitable for a variety of applications where there are no assumed reliable central entities, or controllers, and may significantly improve the scalability issues of conventional single-hop wireless networks. This Ph.D. dissertation mainly investigates two aspects of the research issues related to the efficient multi-hop wireless networks design, namely: (a) network protocols and (b) network management, both in cross-layer design paradigms to ensure the notion of service quality, such as quality of service (QoS) in wireless mesh networks (WMNs) for backhaul applications and quality of information (QoI) in wireless sensor networks (WSNs) for sensing tasks. Throughout the presentation of this Ph.D. dissertation, different network settings are used as illustrative examples, however the proposed algorithms, methodologies, protocols, and models are not restricted in the considered networks, but rather have wide applicability. First, this dissertation proposes a cross-layer design framework integrating a distributed proportional-fair scheduler and a QoS routing algorithm, while using WMNs as an illustrative example. The proposed approach has significant performance gain compared with other network protocols. Second, this dissertation proposes a generic admission control methodology for any packet network, wired and wireless, by modeling the network as a black box, and using a generic mathematical 0. Abstract 3 function and Taylor expansion to capture the admission impact. Third, this dissertation further enhances the previous designs by proposing a negotiation process, to bridge the applications’ service quality demands and the resource management, while using WSNs as an illustrative example. This approach allows the negotiation among different service classes and WSN resource allocations to reach the optimal operational status. Finally, the guarantees of the service quality are extended to the environment of multiple, disconnected, mobile subnetworks, where the question of how to maintain communications using dynamically controlled, unmanned data ferries is investigated

    Cross-layer Resource Allocation Scheme for Multi-band High Rate UWB Systems

    Get PDF
    In this paper, we investigate the use of a cross-layer allocation mechanism for the high-rate ultra-wideband (UWB) systems. The aim of this paper is twofold. First, through the cross-layer approach that provides a new service differentiation approach to the fully distributed UWB systems, we support traffic with quality of service (QoS) guarantee in a multi-user context. Second, we exploit the effective SINR method that represents the characteristics of multiple sub-carrier SINRs in the multi-band WiMedia solution proposed for UWB systems, in order to provide the channel state information needed for the multi-user sub-band allocation. This new approach improves the system performance and optimizes the spectrum utilization with a low cost data exchange between the different users while guaranteeing the required QoS. In addition, this new approach solves the problem of the cohabitation of more than three users in the same WiMedia channel

    Management and Service-aware Networking Architectures (MANA) for Future Internet Position Paper: System Functions, Capabilities and Requirements

    Get PDF
    Future Internet (FI) research and development threads have recently been gaining momentum all over the world and as such the international race to create a new generation Internet is in full swing: GENI, Asia Future Internet, Future Internet Forum Korea, European Union Future Internet Assembly (FIA). This is a position paper identifying the research orientation with a time horizon of 10 years, together with the key challenges for the capabilities in the Management and Service-aware Networking Architectures (MANA) part of the Future Internet (FI) allowing for parallel and federated Internet(s)

    An LSPI based reinforcement learning approach to enable network cooperation in cognitive wireless sensor networks

    Get PDF
    The number of wirelessly communicating devices increases every day, along with the number of communication standards and technologies that they use to exchange data. A relatively new form of research is trying to find a way to make all these co-located devices not only capable of detecting each other's presence, but to go one step further - to make them cooperate. One recently proposed way to tackle this problem is to engage into cooperation by activating 'network services' (such as internet sharing, interference avoidance, etc.) that offer benefits for other co-located networks. This approach reduces the problem to the following research topic: how to determine which network services would be beneficial for all the cooperating networks. In this paper we analyze and propose a conceptual solution for this problem using the reinforcement learning technique known as the Least Square Policy Iteration (LSPI). The proposes solution uses a self-learning entity that negotiates between different independent and co-located networks. First, the reasoning entity uses self-learning techniques to determine which service configuration should be used to optimize the network performance of each single network. Afterwards, this performance is used as a reference point and LSPI is used to deduce if cooperating with other co-located networks can lead to even further performance improvements

    Cloud service localisation

    Get PDF
    The essence of cloud computing is the provision of software and hardware services to a range of users in dierent locations. The aim of cloud service localisation is to facilitate the internationalisation and localisation of cloud services by allowing their adaption to dierent locales. We address the lingual localisation by providing service-level language translation techniques to adopt services to dierent languages and regulatory localisation by providing standards-based mappings to achieve regulatory compliance with regionally varying laws, standards and regulations. The aim is to support and enforce the explicit modelling of aspects particularly relevant to localisation and runtime support consisting of tools and middleware services to automating the deployment based on models of locales, driven by the two localisation dimensions. We focus here on an ontology-based conceptual information model that integrates locale specication in a coherent way

    De-ossifying the Internet Transport Layer : A Survey and Future Perspectives

    Get PDF
    ACKNOWLEDGMENT The authors would like to thank the anonymous reviewers for their useful suggestions and comments.Peer reviewedPublisher PD

    The Semantic Grid: A future e-Science infrastructure

    No full text
    e-Science offers a promising vision of how computer and communication technology can support and enhance the scientific process. It does this by enabling scientists to generate, analyse, share and discuss their insights, experiments and results in an effective manner. The underlying computer infrastructure that provides these facilities is commonly referred to as the Grid. At this time, there are a number of grid applications being developed and there is a whole raft of computer technologies that provide fragments of the necessary functionality. However there is currently a major gap between these endeavours and the vision of e-Science in which there is a high degree of easy-to-use and seamless automation and in which there are flexible collaborations and computations on a global scale. To bridge this practice–aspiration divide, this paper presents a research agenda whose aim is to move from the current state of the art in e-Science infrastructure, to the future infrastructure that is needed to support the full richness of the e-Science vision. Here the future e-Science research infrastructure is termed the Semantic Grid (Semantic Grid to Grid is meant to connote a similar relationship to the one that exists between the Semantic Web and the Web). In particular, we present a conceptual architecture for the Semantic Grid. This architecture adopts a service-oriented perspective in which distinct stakeholders in the scientific process, represented as software agents, provide services to one another, under various service level agreements, in various forms of marketplace. We then focus predominantly on the issues concerned with the way that knowledge is acquired and used in such environments since we believe this is the key differentiator between current grid endeavours and those envisioned for the Semantic Grid
    • 

    corecore