3,959 research outputs found

    Random Constraint Satisfaction Problems

    Full text link
    Random instances of constraint satisfaction problems such as k-SAT provide challenging benchmarks. If there are m constraints over n variables there is typically a large range of densities r=m/n where solutions are known to exist with probability close to one due to non-constructive arguments. However, no algorithms are known to find solutions efficiently with a non-vanishing probability at even much lower densities. This fact appears to be related to a phase transition in the set of all solutions. The goal of this extended abstract is to provide a perspective on this phenomenon, and on the computational challenge that it poses

    Quiet Planting in the Locked Constraint Satisfaction Problems

    Full text link
    We study the planted ensemble of locked constraint satisfaction problems. We describe the connection between the random and planted ensembles. The use of the cavity method is combined with arguments from reconstruction on trees and first and second moment considerations; in particular the connection with the reconstruction on trees appears to be crucial. Our main result is the location of the hard region in the planted ensemble. In a part of that hard region instances have with high probability a single satisfying assignment.Comment: 21 pages, revised versio

    Message passing for the coloring problem: Gallager meets Alon and Kahale

    Full text link
    Message passing algorithms are popular in many combinatorial optimization problems. For example, experimental results show that {\em survey propagation} (a certain message passing algorithm) is effective in finding proper kk-colorings of random graphs in the near-threshold regime. In 1962 Gallager introduced the concept of Low Density Parity Check (LDPC) codes, and suggested a simple decoding algorithm based on message passing. In 1994 Alon and Kahale exhibited a coloring algorithm and proved its usefulness for finding a kk-coloring of graphs drawn from a certain planted-solution distribution over kk-colorable graphs. In this work we show an interpretation of Alon and Kahale's coloring algorithm in light of Gallager's decoding algorithm, thus showing a connection between the two problems - coloring and decoding. This also provides a rigorous evidence for the usefulness of the message passing paradigm for the graph coloring problem. Our techniques can be applied to several other combinatorial optimization problems and networking-related issues.Comment: 11 page

    Phase Transitions and Computational Difficulty in Random Constraint Satisfaction Problems

    Full text link
    We review the understanding of the random constraint satisfaction problems, focusing on the q-coloring of large random graphs, that has been achieved using the cavity method of the physicists. We also discuss the properties of the phase diagram in temperature, the connections with the glass transition phenomenology in physics, and the related algorithmic issues.Comment: 10 pages, Proceedings of the International Workshop on Statistical-Mechanical Informatics 2007, Kyoto (Japan) September 16-19, 200
    • …
    corecore