868 research outputs found

    A Survey on IT-Techniques for a Dynamic Emergency Management in Large Infrastructures

    Get PDF
    This deliverable is a survey on the IT techniques that are relevant to the three use cases of the project EMILI. It describes the state-of-the-art in four complementary IT areas: Data cleansing, supervisory control and data acquisition, wireless sensor networks and complex event processing. Even though the deliverable’s authors have tried to avoid a too technical language and have tried to explain every concept referred to, the deliverable might seem rather technical to readers so far little familiar with the techniques it describes

    Approximate Quantile Computation over Sensor Networks

    Get PDF
    Sensor networks have been deployed in various environments, from battle field surveillance to weather monitoring. The amount of data generated by the sensors can be large. One way to analyze such large data set is to capture the essential statistics of the data. Thus the quantile computation in the large scale sensor network becomes an important but challenging problem. The data may be widely distributed, e.g., there may be thousands of sensors. In addition, the memory and bandwidth among sensors could be quite limited. Most previous quantile computation methods assume that the data is either stored or streaming in a centralized site, which could not be directly applied in the sensor environment. In this paper, we propose a novel algorithm to compute the quantile for sensor network data, which dynamically adapts to the memory limitations. Moreover, since sensors may update their values at any time, an incremental maintenance algorithm is developed to reduce the number of times that a global recomputation is needed upon updates. The performance and complexity of our algorithms are analyzed both theoretically and empirically on various large data sets, which demonstrate the high promise of our method

    Approximate TF–IDF based on topic extraction from massive message stream using the GPU

    Get PDF
    The Web is a constantly expanding global information space that includes disparate types of data and resources. Recent trends demonstrate the urgent need to manage the large amounts of data stream, especially in specific domains of application such as critical infrastructure systems, sensor networks, log file analysis, search engines and more recently, social networks. All of these applications involve large-scale data-intensive tasks, often subject to time constraints and space complexity. Algorithms, data management and data retrieval techniques must be able to process data stream, i.e., process data as it becomes available and provide an accurate response, based solely on the data stream that has already been provided. Data retrieval techniques often require traditional data storage and processing approach, i.e., all data must be available in the storage space in order to be processed. For instance, a widely used relevance measure is Term Frequency–Inverse Document Frequency (TF–IDF), which can evaluate how important a word is in a collection of documents and requires to a priori know the whole dataset. To address this problem, we propose an approximate version of the TF–IDF measure suitable to work on continuous data stream (such as the exchange of messages, tweets and sensor-based log files). The algorithm for the calculation of this measure makes two assumptions: a fast response is required, and memory is both limited and infinitely smaller than the size of the data stream. In addition, to face the great computational power required to process massive data stream, we present also a parallel implementation of the approximate TF–IDF calculation using Graphical Processing Units (GPUs). This implementation of the algorithm was tested on generated and real data stream and was able to capture the most frequent terms. Our results demonstrate that the approximate version of the TF–IDF measure performs at a level that is comparable to the solution of the precise TF–IDF measure

    Data science applications to connected vehicles: Key barriers to overcome

    Get PDF
    The connected vehicles will generate huge amount of pervasive and real time data, at very high frequencies. This poses new challenges for Data science. How to analyse these data and how to address short-term and long-term storage are some of the key barriers to overcome.JRC.C.6-Economics of Climate Change, Energy and Transpor
    • …
    corecore