1,488 research outputs found

    Ranking Large Temporal Data

    Full text link
    Ranking temporal data has not been studied until recently, even though ranking is an important operator (being promoted as a firstclass citizen) in database systems. However, only the instant top-k queries on temporal data were studied in, where objects with the k highest scores at a query time instance t are to be retrieved. The instant top-k definition clearly comes with limitations (sensitive to outliers, difficult to choose a meaningful query time t). A more flexible and general ranking operation is to rank objects based on the aggregation of their scores in a query interval, which we dub the aggregate top-k query on temporal data. For example, return the top-10 weather stations having the highest average temperature from 10/01/2010 to 10/07/2010; find the top-20 stocks having the largest total transaction volumes from 02/05/2011 to 02/07/2011. This work presents a comprehensive study to this problem by designing both exact and approximate methods (with approximation quality guarantees). We also provide theoretical analysis on the construction cost, the index size, the update and the query costs of each approach. Extensive experiments on large real datasets clearly demonstrate the efficiency, the effectiveness, and the scalability of our methods compared to the baseline methods.Comment: VLDB201

    Database Technology for Processing Temporal Data

    Get PDF

    Window-Slicing Techniques Extended to Spanning-Event Streams

    Get PDF
    Streaming systems often use slices to share computation costs among overlapping windows. However they are limited to instantaneous events where only one point represents the event. Here, we extend streams to events that come with a duration, denoted as spanning events. After a short review of the new constraints ensued by event lifespan in a temporal sliding-window context, we propose a new structure for dealing with slices in such an environment, and prove that our technique is both correct and effective to deal with such spanning events

    Scalable Model-Based Management of Correlated Dimensional Time Series in ModelarDB+

    Full text link
    To monitor critical infrastructure, high quality sensors sampled at a high frequency are increasingly used. However, as they produce huge amounts of data, only simple aggregates are stored. This removes outliers and fluctuations that could indicate problems. As a remedy, we present a model-based approach for managing time series with dimensions that exploits correlation in and among time series. Specifically, we propose compressing groups of correlated time series using an extensible set of model types within a user-defined error bound (possibly zero). We name this new category of model-based compression methods for time series Multi-Model Group Compression (MMGC). We present the first MMGC method GOLEMM and extend model types to compress time series groups. We propose primitives for users to effectively define groups for differently sized data sets, and based on these, an automated grouping method using only the time series dimensions. We propose algorithms for executing simple and multi-dimensional aggregate queries on models. Last, we implement our methods in the Time Series Management System (TSMS) ModelarDB (ModelarDB+). Our evaluation shows that compared to widely used formats, ModelarDB+ provides up to 13.7 times faster ingestion due to high compression, 113 times better compression due to the adaptivity of GOLEMM, 630 times faster aggregates by using models, and close to linear scalability. It is also extensible and supports online query processing.Comment: 12 Pages, 28 Figures, and 1 Tabl

    Design and Implementation of a Middleware for Uniform, Federated and Dynamic Event Processing

    Get PDF
    In recent years, real-time processing of massive event streams has become an important topic in the area of data analytics. It will become even more important in the future due to cheap sensors, a growing amount of devices and their ubiquitous inter-connection also known as the Internet of Things (IoT). Academia, industry and the open source community have developed several event processing (EP) systems that allow users to define, manage and execute continuous queries over event streams. They achieve a significantly better performance than the traditional store-then-process'' approach in which events are first stored and indexed in a database. Because EP systems have different roots and because of the lack of standardization, the system landscape became highly heterogenous. Today's EP systems differ in APIs, execution behaviors and query languages. This thesis presents the design and implementation of a novel middleware that abstracts from different EP systems and provides a uniform API, execution behavior and query language to users and developers. As a consequence, the presented middleware overcomes the problem of vendor lock-in and different EP systems are enabled to cooperate with each other. In practice, event streams differ dramatically in volume and velocity. We show therefore how the middleware can connect to not only different EP systems, but also database systems and a native implementation. Emerging applications such as the IoT raise novel challenges and require EP to be more dynamic. We present extensions to the middleware that enable self-adaptivity which is needed in context-sensitive applications and those that deal with constantly varying sets of event producers and consumers. Lastly, we extend the middleware to fully support the processing of events containing spatial data and to be able to run distributed in the form of a federation of heterogenous EP systems

    Accelerating Event Stream Processing in On- and Offline Systems

    Get PDF
    Due to a growing number of data producers and their ever-increasing data volume, the ability to ingest, analyze, and store potentially never-ending streams of data is a mission-critical task in today's data processing landscape. A widespread form of data streams are event streams, which consist of continuously arriving notifications about some real-world phenomena. For example, a temperature sensor naturally generates an event stream by periodically measuring the temperature and reporting it with measurement time in case of a substantial change to the previous measurement. In this thesis, we consider two kinds of event stream processing: online and offline. Online refers to processing events solely in main memory as soon as they arrive, while offline means processing event data previously persisted to non-volatile storage. Both modes are supported by widely used scale-out general-purpose stream processing engines (SPEs) like Apache Flink or Spark Streaming. However, such engines suffer from two significant deficiencies that severely limit their processing performance. First, for offline processing, they load the entire stream from non-volatile secondary storage and replay all data items into the associated online engine in order of their original arrival. While this naturally ensures unified query semantics for on- and offline processing, the costs for reading the entire stream from non-volatile storage quickly dominate the overall processing costs. Second, modern SPEs focus on scaling out computations across the nodes of a cluster, but use only a fraction of the available resources of individual nodes. This thesis tackles those problems with three different approaches. First, we present novel techniques for the offline processing of two important query types (windowed aggregation and sequential pattern matching). Our methods utilize well-understood indexing techniques to reduce the total amount of data to read from non-volatile storage. We show that this improves the overall query runtime significantly. In particular, this thesis develops the first index-based algorithms for pattern queries expressed with the Match_Recognize clause, a new and powerful language feature of SQL that has received little attention so far. Second, we show how to maximize resource utilization of single nodes by exploiting the capabilities of modern hardware. Therefore, we develop a prototypical shared-memory CPU-GPU-enabled event processing system. The system provides implementations of all major event processing operators (filtering, windowed aggregation, windowed join, and sequential pattern matching). Our experiments reveal that regarding resource utilization and processing throughput, such a hardware-enabled system is superior to hardware-agnostic general-purpose engines. Finally, we present TPStream, a new operator for pattern matching over temporal intervals. TPStream achieves low processing latency and, in contrast to sequential pattern matching, is easily parallelizable even for unpartitioned input streams. This results in maximized resource utilization, especially for modern CPUs with multiple cores
    • …
    corecore