38,648 research outputs found

    Deterministic root finding over finite fields using Graeffe transforms

    No full text
    We design new deterministic algorithms, based on Graeffe transforms, to compute all the roots of a polynomial which splits over a finite field F q . Our algorithms were designed to be particularly efficient in the case when the cardinality q − 1 of the multiplicative group of F q is smooth. Such fields are often used in practice because they support fast discrete Fourier transforms. We also present a new nearly optimal algorithm for computing characteristic polynomials of multiplication endomorphisms in finite field extensions. This algorithm allows for the efficient computation of Graeffe transforms of arbitrary orders

    On Roots Factorization for PQC Algorithms

    Get PDF
    In this paper we consider several methods for an efficient extraction of roots of a polynomial over large finite fields. The problem of computing such roots is often the performance bottleneck for some multivariate quantum-immune cryptosystems, such as HFEv-based Quartz, Gui, etc. We also discuss a number of techniques for fast computation of traces as part of the factorization process. These optimization methods could significantly improve the performance of cryptosystems where roots factorization is a part thereof

    On the Decoding Complexity of Cyclic Codes Up to the BCH Bound

    Full text link
    The standard algebraic decoding algorithm of cyclic codes [n,k,d][n,k,d] up to the BCH bound tt is very efficient and practical for relatively small nn while it becomes unpractical for large nn as its computational complexity is O(nt)O(nt). Aim of this paper is to show how to make this algebraic decoding computationally more efficient: in the case of binary codes, for example, the complexity of the syndrome computation drops from O(nt)O(nt) to O(tn)O(t\sqrt n), and that of the error location from O(nt)O(nt) to at most max{O(tn),O(t2log(t)log(n))}\max \{O(t\sqrt n), O(t^2\log(t)\log(n))\}.Comment: accepted for publication in Proceedings ISIT 2011. IEEE copyrigh

    On Taking Square Roots without Quadratic Nonresidues over Finite Fields

    Full text link
    We present a novel idea to compute square roots over finite fields, without being given any quadratic nonresidue, and without assuming any unproven hypothesis. The algorithm is deterministic and the proof is elementary. In some cases, the square root algorithm runs in O~(log2q)\tilde{O}(\log^2 q) bit operations over finite fields with qq elements. As an application, we construct a deterministic primality proving algorithm, which runs in O~(log3N)\tilde{O}(\log^3 N) for some integers NN.Comment: 14 page
    corecore