79 research outputs found

    An Output-sensitive Algorithm for Computing Projections of Resultant Polytopes

    Get PDF
    We develop an incremental algorithm to compute the Newton polytope of the resultant, aka resultant polytope, or its projection along a given direction. The resultant is fundamental in algebraic elimination and in implicitization of parametric hypersurfaces. Our algorithm exactly computes vertex- and halfspace-representations of the desired polytope using an oracle producing resultant vertices in a given direction. It is output-sensitive as it uses one oracle call per vertex. We overcome the bottleneck of determinantal predicates by hashing, thus accelerating execution from 1818 to 100100 times. We implement our algorithm using the experimental CGAL package {\tt triangulation}. A variant of the algorithm computes successively tighter inner and outer approximations: when these polytopes have, respectively, 90\% and 105\% of the true volume, runtime is reduced up to 2525 times. Our method computes instances of 55-, 66- or 77-dimensional polytopes with 3535K, 2323K or 500500 vertices, resp., within 22hr. Compared to tropical geometry software, ours is faster up to dimension 55 or 66, and competitive in higher dimensions

    Toric Generalized Characteristic Polynomials

    Full text link
    We illustrate an efficient new method for handling polynomial systems with degenerate solution sets. In particular, a corollary of our techniques is a new algorithm to find an isolated point in every excess component of the zero set (over an algebraically closed field) of any nn by nn system of polynomial equations. Since we use the sparse resultant, we thus obtain complexity bounds (for converting any input polynomial system into a multilinear factorization problem) which are close to cubic in the degree of the underlying variety -- significantly better than previous bounds which were pseudo-polynomial in the classical B\'ezout bound. By carefully taking into account the underlying toric geometry, we are also able to improve the reliability of certain sparse resultant based algorithms for polynomial system solving

    Implicitization of curves and (hyper)surfaces using predicted support

    Get PDF
    We reduce implicitization of rational planar parametric curves and (hyper)surfaces to linear algebra, by interpolating the coefficients of the implicit equation. For predicting the implicit support, we focus on methods that exploit input and output structure in the sense of sparse (or toric) elimination theory, namely by computing the Newton polytope of the implicit polynomial, via sparse resultant theory. Our algorithm works even in the presence of base points but, in this case, the implicit equation shall be obtained as a factor of the produced polynomial. We implement our methods on Maple, and some on Matlab as well, and study their numerical stability and efficiency on several classes of curves and surfaces. We apply our approach to approximate implicitization, and quantify the accuracy of the approximate output, which turns out to be satisfactory on all tested examples; we also relate our measures to Hausdorff distance. In building a square or rectangular matrix, an important issue is (over)sampling the given curve or surface: we conclude that unitary complexes offer the best tradeoff between speed and accuracy when numerical methods are employed, namely SVD, whereas for exact kernel computation random integers is the method of choice. We compare our prototype to existing software and find that it is rather competitive

    Toric Intersection Theory for Affine Root Counting

    Full text link
    Given any polynomial system with fixed monomial term structure, we give explicit formulae for the generic number of roots with specified coordinate vanishing restrictions. For the case of affine space minus an arbitrary union of coordinate hyperplanes, these formulae are also the tightest possible upper bounds on the number of isolated roots. We also characterize, in terms of sparse resultants, precisely when these upper bounds are attained. Finally, we reformulate and extend some of the prior combinatorial results of the author on which subsets of coefficients must be chosen generically for our formulae to be exact. Our underlying framework provides a new toric variety setting for computational intersection theory in affine space minus an arbitrary union of coordinate hyperplanes. We thus show that, at least for root counting, it is better to work in a naturally associated toric compactification instead of always resorting to products of projective spaces

    Sparse implicitization by interpolation: Characterizing non-exactness and an application to computing discriminants

    Get PDF
    We revisit implicitization by interpolation in order to examine its properties in the context of sparse elimination theory. Based on the computation of a superset of the implicit support, implicitization is reduced to computing the nullspace of a numeric matrix. The approach is applicable to polynomial and rational parameterizations of curves and (hyper)surfaces of any dimension, including the case of parameterizations with base points. Our support prediction is based on sparse (or toric) resultant theory, in order to exploit the sparsity of the input and the output. Our method may yield a multiple of the implicit equation: we characterize and quantify this situation by relating the nullspace dimension to the predicted support and its geometry. In this case, we obtain more than one multiples of the implicit equation; the latter can be obtained via multivariate polynomial gcd (or factoring). All of the above techniques extend to the case of approximate computation, thus yielding a method of sparse approximate implicitization, which is important in tackling larger problems. We discuss our publicly available Maple implementation through several examples, including the benchmark of bicubic surface. For a novel application, we focus on computing the discriminant of a multivariate polynomial, which characterizes the existence of multiple roots and generalizes the resultant of a polynomial system. This yields an efficient, output-sensitive algorithm for computing the discriminant polynomial
    • …
    corecore