238 research outputs found

    Asymptotically Efficient Lattice-Based Digital Signatures

    Get PDF
    We present a general framework that converts certain types of linear collision-resistant hash functions into one-time signatures. Our generic construction can be instantiated based on both general and ideal (e.g. cyclic) lattices, and the resulting signature schemes are provably secure based on the worst-case hardness of approximating the shortest vector (and other standard lattice problems) in the corresponding class of lattices to within a polynomial factor. When instantiated with ideal lattices, the time complexity of the signing and verification algorithms, as well as key and signature size is almost linear (up to poly-logarithmic factors) in the dimension n of the underlying lattice. Since no sub-exponential (in n) time algorithm is known to solve lattice problems in the worst case, even when restricted to ideal lattices, our construction gives a digital signature scheme with an essentially optimal performance/security trade-off

    Interpreting Hash Function Security Proofs

    Get PDF
    We provide a concrete security treatment of several "provably secure" hash functions. Interpreting arguments behind MQ-HASH, FSB, SWIFFTX and VSH we identify similar lines of reasoning. We aim to formulate the main security claims in a language closer to that of attacks. We evaluate designers' claims of provable security and quantify them more precisely, deriving "second order" bounds on bounds. While the authors of FSB, MQ-HASH and SWIFFT(X) prove existence of non-trivial lower bounds on security, we show that the quantification of the bounds limits the practical significance of the proofs

    Cryptographic Hash Functions in Groups and Provable Properties

    Get PDF
    We consider several "provably secure" hash functions that compute simple sums in a well chosen group (G,*). Security properties of such functions provably translate in a natural way to computational problems in G that are simple to define and possibly also hard to solve. Given k disjoint lists Li of group elements, the k-sum problem asks for gi ∊ Li such that g1 * g2 *...* gk = 1G. Hardness of the problem in the respective groups follows from some "standard" assumptions used in public-key cryptology such as hardness of integer factoring, discrete logarithms, lattice reduction and syndrome decoding. We point out evidence that the k-sum problem may even be harder than the above problems. Two hash functions based on the group k-sum problem, SWIFFTX and FSB, were submitted to NIST as candidates for the future SHA-3 standard. Both submissions were supported by some sort of a security proof. We show that the assessment of security levels provided in the proposals is not related to the proofs included. The main claims on security are supported exclusively by considerations about available attacks. By introducing "second-order" bounds on bounds on security, we expose the limits of such an approach to provable security. A problem with the way security is quantified does not necessarily mean a problem with security itself. Although FSB does have a history of failures, recent versions of the two above functions have resisted cryptanalytic efforts well. This evidence, as well as the several connections to more standard problems, suggests that the k-sum problem in some groups may be considered hard on its own, and possibly lead to provable bounds on security. Complexity of the non-trivial tree algorithm is becoming a standard tool for measuring the associated hardness. We propose modifications to the multiplicative Very Smooth Hash and derive security from multiplicative k-sums in contrast to the original reductions that related to factoring or discrete logarithms. Although the original reductions remain valid, we measure security in a new, more aggressive way. This allows us to relax the parameters and hash faster. We obtain a function that is only three times slower compared to SHA-256 and is estimated to offer at least equivalent collision resistance. The speed can be doubled by the use of a special modulus, such a modified function is supported exclusively by the hardness of multiplicative k-sums modulo a power of two. Our efforts culminate in a new multiplicative k-sum function in finite fields that further generalizes the design of Very Smooth Hash. In contrast to the previous variants, the memory requirements of the new function are negligible. The fastest instance of the function expected to offer 128-bit collision resistance runs at 24 cycles per byte on an Intel Core i7 processor and approaches the 17.4 figure of SHA-256. The new functions proposed in this thesis do not provably achieve a usual security property such as preimage or collision resistance from a well-established assumption. They do however enjoy unconditional provable separation of inputs that collide. Changes in input that are small with respect to a well defined measure never lead to identical output in the compression function

    A New Provably Secure Cryptosystem Using Dedekind Domain Direct Product Approach

    Get PDF
    We would like to prevent, detect, and protect communication and information systems' attacks, which include unauthorized reading of a message of file and traffic analysis or active attacks, such as modification of messages or files, and denial of service by providing cryptographic techniques. If we prove that an encryption algorithm is based on mathematical NP-hard problems, we can prove its security. In this paper, we present a new NTRU-Like public-key cryptosystem with security provably based on the worst-case hardness of the approximate lattice problems (NP-hard problems) in some structured lattices (ideal lattices) in order to attain the applicable objectives of preserving the confidentiality of communication and information system resources (includes hardware, software, firmware, information/data, and telecommunications). Our proposed scheme is an improvement of ETRU cryptosystem. ETRU is an NTRU-Like public-key cryptosystem based on the Eisenstein integers Z [f_3 ] where f_3 is a primitive cube root of unity. ETRU has heuristic security and it has no proof of security. We show that our cryptosystem has security stronger than that of ETRU, over cartesian product of dedekind domains and extended cyclotomic polynomials. We prove the security of our main algorithm from the R-SIS and R-LWE problems as NP-hard problems

    On Search Complexity of Discrete Logarithm

    Get PDF

    Permutation invariant lattices

    Get PDF
    We say that a Euclidean lattice in Rn is permutation invariant if its automorphism group has non-trivial intersection with the symmetric group Sn, i.e., if the lattice is closed under the action of some non-identity elements of Sn. Given a fixed element T E Sn, we study properties of the set of all lattices closed under the action of T: we call such lattices T-invariant. These lattices naturally generalize cyclic lattices introduced by Micciancio in [7,8], which we previously studied in [1]. Continuing our investigation, we discuss some basic properties of permutation invariant lattices, in particular proving that the subset of well-rounded latices in the set of all T-invariant lattices in Rn has positive co-dimension (and hence comprises zero proportion) for all T different from an n-cycle

    On the Geometry of Cyclic Lattices

    Get PDF
    Cyclic lattices are sublattices of ZN that are preserved under the rotational shift operator. Cyclic lattices were introduced by D.~Micciancio and their properties were studied in the recent years by several authors due to their importance in cryptography. In particular, Peikert and Rosen showed that on cyclic lattices in prime dimensions, the shortest independent vectors problem SIVP reduces to the shortest vector problem SVP with a particularly small loss in approximation factor, as compared to general lattices. In this paper, we further investigate geometric properties of cyclic lattices. Our main result is a counting estimate for the number of well-rounded cyclic lattices, indicating that well-rounded lattices are more common among cyclic lattices than generically. We also show that SVP is equivalent to SIVP on a positive proportion of Minkowskian well-rounded cyclic lattices in every dimension. As an example, we demonstrate an explicit construction of a family of such lattices on which this equivalence holds. To conclude, we introduce a class of sublattices of ZN closed under the action of subgroups of the permutation group SN, which are a natural generalization of cyclic lattices, and show that our results extend to all such lattices closed under the action of any N-cycle

    On Practical Discrete Gaussian Samplers for Lattice-Based Cryptography

    Get PDF
    • …
    corecore