15,804 research outputs found

    Efficient Circulation of Railway Rolling Stock

    Get PDF
    Railway rolling stock (locomotives, carriages, and train units) is one of the most significant cost sources for operatorsof passenger trains, both public and private. Rolling stock costsare due to material acquisition, power supply, and material maintenance. The efficient circulation of rolling stock material is therefore one of the objectives pursued. In this paper we focus on the circulation of train units on a single line. In order to utilize the train units on this line in an efficient way, they are added to or removed from the trains in certain stations, according to the passengers

    Efficient Circulation of Railway Rolling Stock

    Get PDF
    Railway rolling stock (locomotives, carriages, and train units) is oneof the most significant cost sources for operatorsof passenger trains,both public and private. Rolling stock costsare due to materialacquisition, power supply, and material maintenance. The efficientcirculation of rolling stock material is therefore one of theobjectives pursued. In this paper we focus on the circulation of trainunits on a single line. In order to utilize the train units on thisline in an efficient way, they are added to or removed from the trainsin certain stations, according to the passengers' seat demand. Sinceadding and removing train units has to respect specific rules, it isimportant to know the exact order of the train units in the trains.This aspect strongly increases the complexity of the rolling stockcirculation problem. In this paper we present aninteger programmingapproach to solve this problem. We also apply this approach to a reallife case study based on the 2001-2002 timetable of NS Reizigers, themajor Dutch operator of passenger trains.logistics;operations research;public transportation;railways;rolling stock circulation

    Circulation of Railway Rolling Stock: A Branch-and-Price Approach

    Get PDF
    We describe an algorithmic approach to determine an efficient railway rolling stock circulation on a single line or on a set of interacting lines. Given the timetable and the passengers? seat demand, we develop a branch-and-price algorithm that results in an allocation of rolling stock material to the daily trips. In order to efficiently utilize the train units, they can be added to or removed from the trains at some stations along the line. These changes in train composition are subject to several constraints, for example corresponding to the order of the train units within a train. A solution is evaluated based on three criteria, i.e. the service to passengers, the robustness, and the cost of the circulation. The branch-and-price algorithm that we developed is tested on real-life instances from NS Reizigers, the main Dutch operator of passenger trains

    Allocation of Railway Rolling Stock for Passenger Trains

    Get PDF
    For a commercially operating railway company, providing a high level of service for the passengers is of utmost importance. The latter requires a high punctuality of the trains and an adequate rolling stock capacity. Unfortunately, the latter is currently (2002) one of the bottlenecks in the service provision by the main Dutch railway operator NS Reizigers. Especially during the morning rush hours, many passengers cannot be transported according to the usual service standards due to a shortage of the rolling stock capacity. On the other hand, a more effective allocation of the available rolling stock capacity seems to be feasible, since there are also several trains with some slack capacity. The effectiveness of the rolling stock capacity is determined mainly by the allocation of the train types and subtypes to the lines. Therefore, we describe in this paper a model that can be used to find an optimal allocation of train types and subtypes to train series. This optimal allocation is more effective than the manually planned one, which is accomplished by minimizing the shortages of capacity during the rush hours. The model is implemented in the modeling language OPL Studio 3.1, solved by CPLEX 7.0, and tested on several scenarios based on the 2001-2002 timetable of NS Reizigers. The results of the model were received positively, both by the planners and by the management in practice, since these results showed that a significant service improvement over the manually planned allocation can be achieved within a shorter throughput time of the involved part of the planning process.operations research;transportation;railways;capacity allocation;rolling stock

    The new Dutch timetable: The OR revolution

    Get PDF
    In December 2006, Netherlands Railways introduced a completely new timetable. Its objective was to facilitate the growth of passenger and freight transport on a highly utilized railway network, and improve the robustness of the timetable resulting in less train delays in the operation. Further adjusting the existing timetable constructed in 1970 was not option anymore, because further growth would then require significant investments in the rail infrastructure. Constructing a railway timetable from scratch for about 5,500 daily trains was a complex problem. To support this process, we generated several timetables using sophisticated operations research techniques, and finally selected and implemented one of these timetables. Furthermore, because rolling-stock and crew costs are principal components of the cost of a passenger railway operator, we used innovative operations research tools to devise efficient schedules for these two resources. The new resource schedules and the increased number of passengers resulted in an additional annual profit of 40 million euros (60million)ofwhichabout10millioneuroswerecreatedbyadditionalrevenues.Weexpectthistoincreaseto70millioneuros(60 million) of which about 10 million euros were created by additional revenues. We expect this to increase to 70 million euros (105 million) annually in the coming years. However, the benefits of the new timetable for the Dutch society as a whole are much greater: more trains are transporting more passengers on the same railway infrastructure, and these trains are arriving and departing on schedule more than they ever have in the past. In addition, the rail transport system will be able to handle future transportation demand growth and thus allow cities to remain accessible. Therefore, people can switch from car transport to rail transport, which will reduce the emission of greenhouse gases.

    Crew Scheduling for Netherlands Railways: "destination: customer"

    Get PDF
    : In this paper we describe the use of a set covering model with additional constraints for scheduling train drivers and conductors for the Dutch railway operator NS Reizigers. The schedules were generated according to new rules originating from the project "Destination: Customer" ("Bestemming: Klant" in Dutch). This project is carried out by NS Reizigers in order to increase the quality and the punctuality of its train services. With respect to the scheduling of drivers and conductors, this project involves the generation of efficient and acceptable duties with a high robustness against the transfer of delays of trains. A key issue for the acceptability of the duties is the included amount of variation per duty. The applied set covering model is solved by dynamic column generation techniques, Lagrangean relaxation and powerful heuristics. The model and the solution techniques are part of the TURNI system, which is currently used by NS Reizigers for carrying out several analyses concerning the required capacities of the depots. The latter are strongly influenced by the new rules.crew scheduling;dynamic column generation;lagrange relaxation;railways;set covering model

    Mathematical models for planning support

    Get PDF
    In this paper we describe how computer systems can provide planners with active planning support, when these planners are carrying out their daily planning activities. This means that computer systems actively participate in the planning process by automatically generating plans or partial plans. Active planning support by computer systems requires the application of mathematical models and solution techniques. In this paper we describe the modeling process in general terms, as well as several modeling and solution techniques. We also present some background information on computational complexity theory, since most practical planning problems are hard to solve. We also describe how several objective functions can be handled, since it is rare that solutions can be evaluated by just one single objective. Furthermore, we give an introduction into the use of mathematical modeling systems, which are useful tools in a modeling context, especially during the development phases of a mathematical model. We finish the paper with a real life example related to the planning process of the rolling stock circulation of a railway operator.optimization;mathematical models;modeling process;planning support;Planning

    Overview of Infrastructure Charging, part 4, IMPROVERAIL Project Deliverable 9, “Improved Data Background to Support Current and Future Infrastructure Charging Systems”

    Get PDF
    Improverail aims are to further support the establishment of railway infrastructure management in accordance with Directive 91/440, as well as the new railway infrastructure directives, by developing the necessary tools for modelling the management of railway infrastructure; by evaluating improved methods for capacity and resources management, which allow the improvement of the Life Cycle Costs (LCC) calculating methods, including elements related to vehicle - infrastructure interaction and external costs; and by improving data background in support of charging for use of railway infrastructure. To achieve these objectives, Improverail is organised along 8 workpackages, with specific objectives, responding to the requirements of the task 2.2.1/10 of the 2nd call made in the 5th RTD Framework Programme in December 1999.This part is the task 7.1 (Review of infrastructure charging systems) to the workpackage 7 (Analysis of the relation between infrastructure cost variation and diversity of infrastructure charging systems).Before explaining the economic characteristics of railway and his basic pricing principles, authors must specify the objectives of railways infrastructure charging.principle of pricing ; rail infrastructure charging ; public service obligation ; rail charging practice ; Europe ; Improverail
    corecore