232,389 research outputs found

    An Induced Natural Selection Heuristic for Finding Optimal Bayesian Experimental Designs

    Get PDF
    Bayesian optimal experimental design has immense potential to inform the collection of data so as to subsequently enhance our understanding of a variety of processes. However, a major impediment is the difficulty in evaluating optimal designs for problems with large, or high-dimensional, design spaces. We propose an efficient search heuristic suitable for general optimisation problems, with a particular focus on optimal Bayesian experimental design problems. The heuristic evaluates the objective (utility) function at an initial, randomly generated set of input values. At each generation of the algorithm, input values are "accepted" if their corresponding objective (utility) function satisfies some acceptance criteria, and new inputs are sampled about these accepted points. We demonstrate the new algorithm by evaluating the optimal Bayesian experimental designs for the previously considered death, pharmacokinetic and logistic regression models. Comparisons to the current "gold-standard" method are given to demonstrate the proposed algorithm as a computationally-efficient alternative for moderately-large design problems (i.e., up to approximately 40-dimensions)

    Designs for generalized linear models with random block effects via information matrix approximations

    No full text
    The selection of optimal designs for generalized linear mixed models is complicated by the fact that the Fisher information matrix, on which most optimality criteria depend, is computationally expensive to evaluate. Our focus is on the design of experiments for likelihood estimation of parameters in the conditional model. We provide two novel approximations that substantially reduce the computational cost of evaluating the information matrix by complete enumeration of response outcomes, or Monte Carlo approximations thereof: (i) an asymptotic approximation which is accurate when there is strong dependence between observations in the same block; (ii) an approximation via Kriging interpolators. For logistic random intercept models, we show how interpolation can be especially effective for finding pseudo-Bayesian designs that incorporate uncertainty in the values of the model parameters. The new results are used to provide the first evaluation of the efficiency, for estimating conditional models, of optimal designs from closed-form approximations to the information matrix derived from marginal models. It is found that correcting for the marginal attenuation of parameters in binary-response models yields much improved designs, typically with very high efficiencies. However, in some experiments exhibiting strong dependence, designs for marginal models may still be inefficient for conditional modelling. Our asymptotic results provide some theoretical insights into why such inefficiencies occur
    • …
    corecore