43 research outputs found

    A Hierarchy Theorem for Interactive Proofs of Proximity

    Get PDF
    The number of rounds, or round complexity, used in an interactive protocol is a fundamental resource. In this work we consider the significance of round complexity in the context of Interactive Proofs of Proximity (IPPs). Roughly speaking, IPPs are interactive proofs in which the verifier runs in sublinear time and is only required to reject inputs that are far from the language. Our main result is a round hierarchy theorem for IPPs, showing that the power of IPPs grows with the number of rounds. More specifically, we show that there exists a gap function g(r) = Theta(r^2) such that for every constant r geq 1 there exists a language that (1) has a g(r)-round IPP with verification time t=t(n,r) but (2) does not have an r-round IPP with verification time t (or even verification time t\u27=poly(t)). In fact, we prove a stronger result by exhibiting a single language L such that, for every constant r geq 1, there is an O(r^2)-round IPP for L with t=n^{O(1/r)} verification time, whereas the verifier in any r-round IPP for L must run in time at least t^{100}. Moreover, we show an IPP for L with a poly-logarithmic number of rounds and only poly-logarithmic erification time, yielding a sub-exponential separation between the power of constant-round IPPs versus general (unbounded round) IPPs. From our hierarchy theorem we also derive implications to standard interactive proofs (in which the verifier can run in polynomial time). Specifically, we show that the round reduction technique of Babai and Moran (JCSS, 1988) is (almost) optimal among all blackbox transformations, and we show a connection to the algebrization framework of Aaronson and Wigderson (TOCT, 2009)

    On approximate polynomial identity testing and real root finding

    Get PDF
    In this thesis we study the following three topics, which share a connection through the (arithmetic) circuit complexity of polynomials. 1. Rank of symbolic matrices. 2. Computation of real roots of real sparse polynomials. 3. Complexity of symmetric polynomials. We start with studying the commutative and non-commutative rank of symbolic matrices with linear forms as their entries. Here we show a deterministic polynomial time approximation scheme (PTAS) for computing the commutative rank. Prior to this work, deterministic polynomial time algorithms were known only for computing a 1/2-approximation of the commutative rank. We give two distinct proofs that our algorithm is a PTAS. We also give a min-max characterization of commutative and non-commutative ranks. Thereafter we direct our attention to computation of roots of uni-variate polynomial equations. It is known that solving a system of polynomial equations reduces to solving a uni-variate polynomial equation. We describe a polynomial time algorithm for (n,k,\tau)-nomials which computes approximations of all the real roots (even though it may also compute approximations of some complex roots). Moreover, we also show that the roots of integer trinomials are well-separated. Finally, we study the complexity of symmetric polynomials. It is known that symmetric Boolean functions are easy to compute. In contrast, we show that the assumption VP \neq VNP implies that there exist hard symmetric polynomials. To prove this result, we use an algebraic analogue of the classical Newton iteration.In dieser Dissertation untersuchen wir die folgenden drei Themen, welche durch die (arithmetische) Schaltkreiskomplexität von Polynomen miteinander verbunden sind: 1. der Rang von symbolischen Matrizen, 2. die Berechnung von reellen Nullstellen von dünnbesetzten (“sparse”) Polynomen mit reellen Koeffizienten, 3. die Komplexität von symmetrischen Polynomen. Wir untersuchen zunächst den kommutativen und nicht-kommutativen Rang von Matrizen, deren Einträge aus Linearformen bestehen. Hier beweisen wir die Existenz eines deterministischem Polynomialzeit-Approximationsschemas (PTAS) für die Berechnung des kommutative Ranges. Zuvor waren polynomielle Algorithmen nur für die Berechnung einer 1/2-Approximation des kommutativen Ranges bekannt. Wir geben zwei unterschiedliche Beweise für den Fakt, dass unser Algorithmus tatsächlich ein PTAS ist. Zusätzlich geben wir eine min-max Charakterisierung des kommutativen und nicht-kommutativen Ranges. Anschließend lenken wir unsere Aufmerksamkeit auf die Berechnung von Nullstellen von univariaten polynomiellen Gleichungen. Es ist bekannt, dass das Lösen eines polynomiellem Gleichungssystems auf das Lösen eines univariaten Polynoms zurückgeführt werden kann. Wir geben einen Polynomialzeit-Algorithmus für (n, k, \tau)-Nome, welcher Abschätzungen für alle reellen Nullstellen berechnet (in manchen Fallen auch Abschätzungen von komplexen Nullstellen). Zusätzlich beweisen wir, dass Nullstellen von ganzzahligen Trinomen stets weit voneinander entfernt sind. Schließlich untersuchen wir die Komplexität von symmetrischen Polynomen. Es ist bereits bekannt, dass sich symmetrische Boolesche Funktionen leicht berechnen lassen. Im Gegensatz dazu zeigen wir, dass die Annahme VP \neq VNP bedeutet, dass auch harte symmetrische Polynome existieren. Um dies zu beweisen benutzen wir ein algebraisches Analog zum klassischen Newton-Verfahren

    Polynomial-Time Pseudodeterministic Construction of Primes

    Full text link
    A randomized algorithm for a search problem is *pseudodeterministic* if it produces a fixed canonical solution to the search problem with high probability. In their seminal work on the topic, Gat and Goldwasser posed as their main open problem whether prime numbers can be pseudodeterministically constructed in polynomial time. We provide a positive solution to this question in the infinitely-often regime. In more detail, we give an *unconditional* polynomial-time randomized algorithm BB such that, for infinitely many values of nn, B(1n)B(1^n) outputs a canonical nn-bit prime pnp_n with high probability. More generally, we prove that for every dense property QQ of strings that can be decided in polynomial time, there is an infinitely-often pseudodeterministic polynomial-time construction of strings satisfying QQ. This improves upon a subexponential-time construction of Oliveira and Santhanam. Our construction uses several new ideas, including a novel bootstrapping technique for pseudodeterministic constructions, and a quantitative optimization of the uniform hardness-randomness framework of Chen and Tell, using a variant of the Shaltiel--Umans generator

    Stronger Connections Between Circuit Analysis and Circuit Lower Bounds, via PCPs of Proximity

    Get PDF
    We considerably sharpen the known connections between circuit-analysis algorithms and circuit lower bounds, show intriguing equivalences between the analysis of weak circuits and (apparently difficult) circuits, and provide strong new lower bounds for approximately computing Boolean functions with depth-two neural networks and related models. - We develop approaches to proving THR o THR lower bounds (a notorious open problem), by connecting algorithmic analysis of THR o THR to the provably weaker circuit classes THR o MAJ and MAJ o MAJ, where exponential lower bounds have long been known. More precisely, we show equivalences between algorithmic analysis of THR o THR and these weaker classes. The epsilon-error CAPP problem asks to approximate the acceptance probability of a given circuit to within additive error epsilon; it is the "canonical" derandomization problem. We show: - There is a non-trivial (2^n/n^{omega(1)} time) 1/poly(n)-error CAPP algorithm for poly(n)-size THR o THR circuits if and only if there is such an algorithm for poly(n)-size MAJ o MAJ. - There is a delta > 0 and a non-trivial SAT (delta-error CAPP) algorithm for poly(n)-size THR o THR circuits if and only if there is such an algorithm for poly(n)-size THR o MAJ. Similar results hold for depth-d linear threshold circuits and depth-d MAJORITY circuits. These equivalences are proved via new simulations of THR circuits by circuits with MAJ gates. - We strengthen the connection between non-trivial derandomization (non-trivial CAPP algorithms) for a circuit class C, and circuit lower bounds against C. Previously, [Ben-Sasson and Viola, ICALP 2014] (following [Williams, STOC 2010]) showed that for any polynomial-size class C closed under projections, non-trivial (2^{n}/n^{omega(1)} time) CAPP for OR_{poly(n)} o AND_{3} o C yields NEXP does not have C circuits. We apply Probabilistic Checkable Proofs of Proximity in a new way to show it would suffice to have a non-trivial CAPP algorithm for either XOR_2 o C, AND_2 o C or OR_2 o C. - A direct corollary of the first two bullets is that NEXP does not have THR o THR circuits would follow from either: - a non-trivial delta-error CAPP (or SAT) algorithm for poly(n)-size THR o MAJ circuits, or - a non-trivial 1/poly(n)-error CAPP algorithm for poly(n)-size MAJ o MAJ circuits. - Applying the above machinery, we extend lower bounds for depth-two neural networks and related models [R. Williams, CCC 2018] to weak approximate computations of Boolean functions. For example, for arbitrarily small epsilon > 0, we prove there are Boolean functions f computable in nondeterministic n^{log n} time such that (for infinitely many n) every polynomial-size depth-two neural network N on n inputs (with sign or ReLU activation) must satisfy max_{x in {0,1}^n}|N(x)-f(x)|>1/2-epsilon. That is, short linear combinations of ReLU gates fail miserably at computing f to within close precision. Similar results are proved for linear combinations of ACC o THR circuits, and linear combinations of low-degree F_p polynomials. These results constitute further progress towards THR o THR lower bounds

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    On the complexity of modified instances

    Get PDF
    Diese Dissertation untersucht die Komplexität modifizierter Instanzen und inwiefern sich NP-vollständige Probleme unter minimaler Veränderung stabil verhalten. Wir betrachten für verschiedene NP-vollständige Probleme, ob die Kenntnis einer Lösung einer Instanz eine Hilfe beim Entscheiden einer geringfügig modifizierten Instanz liefern kann. Außerdem untersuchen wir, inwieweit sich modifizierte Instanzen effizient entscheiden lassen, wenn nicht nur eine Lösung der unmodifizierten Instanz gegeben ist, sondern allgemeinere Hinweise, wie z.B. ein polynomiell langer String. Diese Fragestellung spielt nicht nur überall dort eine große Rolle, wo NP-vollständige Probleme in dynamischen Situationen schnell gelöst werden müssen, sondern liefert auch tiefere Einsichten in die generelle Natur der Klasse der NP-vollständigen Probleme. Des Weiteren betrachten wir das Problem der Reoptimierung. Das heißt, wir untersuchen für verschiedene Optimierungsprobleme, ob man für modifizierte Instanzen eines Optimierungsproblems eine gute Lösung finden kann, wenn bereits eine optimale Lösung einer ähnlichen Instanz bekannt ist

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    Correlation Intractability and SNARGs from Sub-exponential DDH

    Get PDF
    We provide the first constructions of SNARGs for Batch-NP and P based solely on the sub-exponential Decisional Diffie Hellman (DDH) assumption. Our schemes achieve poly-logarithmic proof sizes. Central to our results and of independent interest is a new construction of correlation-intractable hash functions for ``small input\u27\u27 product relations verifiable in TC0\mathsf{TC}^0, based on sub-exponential DDH
    corecore