580 research outputs found

    Efficient Channel Shortening Equalizer Design

    Get PDF

    A low-complexity eigenfilter design method for channel shortening equalizers for DMT systems

    Get PDF
    We present a new low-complexity method for the design of channel shortening equalizers for discrete multitone (DMT) modulation systems using the eigenfilter approach. In contrast to other such methods which require a Cholesky decomposition for each delay parameter value used, ours requires only one such decomposition. Simulation results show that our method performs nearly optimally in terms of observed bit rate

    On the eigenfilter design method and its applications: a tutorial

    Get PDF
    The eigenfilter method for digital filter design involves the computation of filter coefficients as the eigenvector of an appropriate Hermitian matrix. Because of its low complexity as compared to other methods as well as its ability to incorporate various time and frequency-domain constraints easily, the eigenfilter method has been found to be very useful. In this paper, we present a review of the eigenfilter design method for a wide variety of filters, including linear-phase finite impulse response (FIR) filters, nonlinear-phase FIR filters, all-pass infinite impulse response (IIR) filters, arbitrary response IIR filters, and multidimensional filters. Also, we focus on applications of the eigenfilter method in multistage filter design, spectral/spacial beamforming, and in the design of channel-shortening equalizers for communications applications

    Noise optimized eigenfilter design of time-domain equalizers for DMT systems

    Get PDF
    The design of time-domain equalizers or TEQs for discrete multitone modulation (DMT) systems has recently received much attention. In this paper, we present a generalization of one such design method which takes into account the noise observed in a DMT channel. Furthermore, we show how this generalization can be used for the design of fractionally spaced equalizers or FSEs. Experimental results are presented showing that our design method performs better than other known techniques

    Time Domain Equalizer Design Using Bit Error Rate Minimization for UWB Systems

    Get PDF
    Ultra-wideband (UWB) communication systems occupy huge bandwidths with very low power spectral densities. This feature makes the UWB channels highly rich in resolvable multipaths. To exploit the temporal diversity, the receiver is commonly implemented through a Rake. The aim to capture enough signal energy to maintain an acceptable output signal-to-noise ratio (SNR) dictates a very complicated Rake structure with a large number of fingers. Channel shortening or time domain equalizer (TEQ) can simplify the Rake receiver design by reducing the number of significant taps in the effective channel. In this paper, we first derive the bit error rate (BER) of a multiuser and multipath UWB system in the presence of a TEQ at the receiver front end. This BER is then written in a form suitable for traditional optimization. We then present a TEQ design which minimizes the BER of the system to perform efficient channel shortening. The performance of the proposed algorithm is compared with some generic TEQ designs and other Rake structures in UWB channels. It is shown that the proposed algorithm maintains a lower BER along with efficiently shortening the channel

    Intersymbol and Intercarrier Interference in OFDM Transmissions through Highly Dispersive Channels

    Get PDF
    This work quantifies, for the first time, intersymbol and intercarrier interferences induced by very dispersive channels in OFDM systems. The resulting achievable data rate for \wam{suboptimal} OFDM transmissions is derived based on the computation of signal-to-interference-plus-noise ratio for arbitrary length finite duration channel impulse responses. Simulation results point to significant differences between data rates obtained via conventional formulations, for which interferences are supposed to be limited to two or three blocks, versus the data rates considering the actual channel dispersion

    Time-Frequency Packing for High Capacity Coherent Optical Links

    Full text link
    We consider realistic long-haul optical links, with linear and nonlinear impairments, and investigate the application of time-frequency packing with low-order constellations as a possible solution to increase the spectral efficiency. A detailed comparison with available techniques from the literature will be also performed. We will see that this technique represents a feasible solution to overcome the relevant theoretical and technological issues related to this spectral efficiency increase and could be more effective than the simple adoption of high-order modulation formats.Comment: 10 pages, 9 figures. arXiv admin note: text overlap with arXiv:1406.5685 by other author

    Trellis-Based Equalization for Sparse ISI Channels Revisited

    Full text link
    Sparse intersymbol-interference (ISI) channels are encountered in a variety of high-data-rate communication systems. Such channels have a large channel memory length, but only a small number of significant channel coefficients. In this paper, trellis-based equalization of sparse ISI channels is revisited. Due to the large channel memory length, the complexity of maximum-likelihood detection, e.g., by means of the Viterbi algorithm (VA), is normally prohibitive. In the first part of the paper, a unified framework based on factor graphs is presented for complexity reduction without loss of optimality. In this new context, two known reduced-complexity algorithms for sparse ISI channels are recapitulated: The multi-trellis VA (M-VA) and the parallel-trellis VA (P-VA). It is shown that the M-VA, although claimed, does not lead to a reduced computational complexity. The P-VA, on the other hand, leads to a significant complexity reduction, but can only be applied for a certain class of sparse channels. In the second part of the paper, a unified approach is investigated to tackle general sparse channels: It is shown that the use of a linear filter at the receiver renders the application of standard reduced-state trellis-based equalizer algorithms feasible, without significant loss of optimality. Numerical results verify the efficiency of the proposed receiver structure.Comment: To be presented at the 2005 IEEE Int. Symp. Inform. Theory (ISIT 2005), September 4-9, 2005, Adelaide, Australi
    corecore