16 research outputs found

    Airborne Wireless Sensor Networks for Airplane Monitoring System

    Get PDF
    In traditional airplane monitoring system (AMS), data sensed from strain, vibration, ultrasound of structures or temperature, and humidity in cabin environment are transmitted to central data repository via wires. However, drawbacks still exist in wired AMS such as expensive installation and maintenance, and complicated wired connections. In recent years, accumulating interest has been drawn to performing AMS via airborne wireless sensor network (AWSN) system with the advantages of flexibility, low cost, and easy deployment. In this review, we present an overview of AMS and AWSN and demonstrate the requirements of AWSN for AMS particularly. Furthermore, existing wireless hardware prototypes and network communication schemes of AWSN are investigated according to these requirements. This paper will improve the understanding of how the AWSN design under AMS acquires sensor data accurately and carries out network communication efficiently, providing insights into prognostics and health management (PHM) for AMS in future

    Multi-channel Communication in Wireless Networks

    Get PDF
    Multi-channel communication has been developed to overcome some limitations related to the throughput and delivery rate which become necessary for many applications that require sufficient bandwidth to transmit a large amount of data in Wireless Networks (WNs) such as multimedia communication. However, the requirement of frequent negotiation for the channels assignment process incurs extra-large communication overhead and collisions, which results in the reduction of both communication quality and network lifetime. This effect can play an important role in the performance deterioration of certain WNs types, especially the Wireless Sensor Networks (WSNs) since they are characterized by their limited resources. This work addresses the improvement of communication in multi-channel WSNs. Consequently, four protocols are proposed. The first one is the Multi-Channel Scheduling Protocol (MCSP) for wireless personal networks IEEE802.15.4, which focuses on overcoming the collisions problem through a multi-channel scheduling scheme. The second protocol is the Energy-efficient Reinforcement Learning (RL) Multi-channel MAC (ERL MMAC) for WSNs, which bases on the enhancement of the energy consumption in WSNs by reducing collisions and balancing the remaining energy between the nodes using a singleagent RL. The third work is the proposition of a new heuristically accelerated RL protocol named Heuristically Accelerated Reinforcement Learning approach for Channel Assignment (HARL CA) for WSNs to reduce the number of learning iterations in an energy-efficient way taking into account the bandwidth aspect in the scheduling process. Finally, the fourth contribution represents a proposition of a new cooperative multi-agent RL approach for Channel Assignment (CRLCA) in WSNs, which improves cooperative learning using an accelerated learning model, and overcomes the extra communication overhead problem of the cooperative RL using a new method for self-scheduling and energy balancing. The proposed approach is performed through two algorithms SCRLCA and DCRLCA for Static and Dynamic performance respectively. The proposed protocols and techniques have been successfully evaluated and show outperformed results in different cases through several experiments

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Recent Trends in Communication Networks

    Get PDF
    In recent years there has been many developments in communication technology. This has greatly enhanced the computing power of small handheld resource-constrained mobile devices. Different generations of communication technology have evolved. This had led to new research for communication of large volumes of data in different transmission media and the design of different communication protocols. Another direction of research concerns the secure and error-free communication between the sender and receiver despite the risk of the presence of an eavesdropper. For the communication requirement of a huge amount of multimedia streaming data, a lot of research has been carried out in the design of proper overlay networks. The book addresses new research techniques that have evolved to handle these challenges

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link

    Temperature aware power optimization for multicore floating-point units

    Full text link

    QoS-Aware Energy Management and Node Scheduling Schemes for Sensor Network-Based Surveillance Applications

    Full text link
    Recent advances in wireless technologies have led to an increased deployment of Wireless Sensor Networks (WSNs) for a plethora of diverse surveillance applications such as health, military, and environmental. However, sensor nodes in WSNs usually suffer from short device lifetime due to severe energy constraints and therefore, cannot guarantee to meet the Quality of Service (QoS) needs of various applications. This is proving to be a major hindrance to the widespread adoption of WSNs for such applications. Therefore, to extend the lifetime of WSNs, it is critical to optimize the energy usage in sensor nodes that are often deployed in remote and hostile terrains. To this effect, several energy management schemes have been proposed recently. Node scheduling is one such strategy that can prolong the lifetime of WSNs and also helps to balance the workload among the sensor nodes. In this article, we discuss on the energy management techniques of WSN with a particular emphasis on node scheduling and propose an energy management life-cycle model and an energy conservation pyramid to extend the network lifetime of WSNs. We have provided a detailed classification and evaluation of various node scheduling schemes in terms of their ability to fulfill essential QoS requirements, namely coverage, connectivity, fault tolerance, and security. We considered essential design issues such as network type, deployment pattern, sensing model in the classification process. Furthermore, we have discussed the operational characteristics of schemes with their related merits and demerits. We have compared the efficacy of a few well known graph-based scheduling schemes with suitable performance analysis graph. Finally, we study challenges in designing and implementing node scheduling schemes from a QoS perspective and outline open research problems

    Application of cognitive radio based sensor network in smart grids for efficient, holistic monitoring and control.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Durban.This thesis is directed towards the application of cognitive radio based sensor network (CRSN) in smart grid (SG) for efficient, holistic monitoring and control. The work involves enabling of sensor network and wireless communication devices for spectra utilization via the capability of Dynamic Spectrum Access (DSA) of a cognitive radio (CR) as well as end to end communication access technology for unified monitoring and control in smart grids. Smart Grid (SG) is a new power grid paradigm that can provide predictive information and recommendations to utilities, including their suppliers, and their customers on how best to manage power delivery and consumption. SG can greatly reduce air pollution from our surrounding by renewable power sources such as wind energy, solar plants and huge hydro stations. SG also reduces electricity blackouts and surges. Communication network is the foundation for modern SG. Implementing an improved communication solution will help in addressing the problems of the existing SG. Hence, this study proposed and implemented improved CRSN model which will help to ultimately evade the inherent problems of communication network in the SG such as: energy inefficiency, interference, spectrum inefficiencies, poor quality of service (QoS), latency and throughput. To overcome these problems, the existing approach which is more predominant is the use of wireless sensor network (WSNs) for communication needs in SG. However, WSNs have low battery power, low computational complexity, low bandwidth support, and high latency or delay due to multihop transmission in existing WSN topology. Consequently, solving these problems by addressing energy efficiency, bandwidth or throughput, and latency have not been fully realized due to the limitations in the WSN and the existing network topology. Therefore, existing approach has not fully addressed the communication needs in SG. SG can be fully realized by integrating communication network technologies infrastructures into the power grid. Cognitive Radio-based Sensor Network (CRSN) is considered a feasible solution to enhance various aspects of the electric power grid such as communication with end and remote devices in real-time manner for efficient monitoring and to realize maximum benefits of a smart grid system. CRSN in SG is aimed at addressing the problem of spectrum inefficiency and interference which wireless sensor network (WSN) could not. However, numerous challenges for CRSNs are due to the harsh environmental wireless condition in a smart grid system. As a result, latency, throughput and reliability become critical issues. To overcome these challenges, lots of approaches can be adopted ranging from integration of CRSNs into SGs; proper implementation design model for SG; reliable communication access devices for SG; key immunity requirements for communication infrastructure in SG; up to communication network protocol optimization and so on. To this end, this study utilized the National Institute of Standard (NIST) framework for SG interoperability in the design of unified communication network architecture including implementation model for guaranteed quality of service (QoS) of smart grid applications. This involves virtualized network in form of multi-homing comprising low power wide area network (LPWAN) devices such as LTE CAT1/LTE-M, and TV white space band device (TVBD). Simulation and analysis show that the performance of the developed modules architecture outperforms the legacy wireless systems in terms of latency, blocking probability, and throughput in SG harsh environmental condition. In addition, the problem of multi correlation fading channels due to multi antenna channels of the sensor nodes in CRSN based SG has been addressed by the performance analysis of a moment generating function (MGF) based M-QAM error probability over Nakagami-q dual correlated fading channels with maximum ratio combiner (MRC) receiver technique which includes derivation and novel algorithmic approach. The results of the MATLAB simulation are provided as a guide for sensor node deployment in order to avoid the problem of multi correlation in CRSN based SGs. SGs application requires reliable and efficient communication with low latency in timely manner as well as adequate topology of sensor nodes deployment for guaranteed QoS. Another important requirement is the need for an optimized protocol/algorithms for energy efficiency and cross layer spectrum aware made possible for opportunistic spectrum access in the CRSN nodes. Consequently, an optimized cross layer interaction of the physical and MAC layer protocols using various novel algorithms and techniques was developed. This includes a novel energy efficient distributed heterogeneous clustered spectrum aware (EDHC- SA) multichannel sensing signal model with novel algorithm called Equilateral triangulation algorithm for guaranteed network connectivity in CRSN based SG. The simulation results further obtained confirm that EDHC-SA CRSN model outperforms conventional ZigBee WSN in terms of bit error rate (BER), end-to-end delay (latency) and energy consumption. This no doubt validates the suitability of the developed model in SG

    Quantifying, generating and mitigating radio interference in Low-Power Wireless Networks

    Get PDF
    Doctoral Programme in Telecommunication - MAP-teleRadio interference a ects the performance of low-power wireless networks (LPWN), leading to packet loss and reduced energy-e ciency, among other problems. Reliability of communications is key to expand application domains for LPWN. Since most LPWN operate in the license-free Industrial Scienti c and Medical (ISM) bands and hence share the spectrum with other wireless technologies, addressing interference is an important challenge. In this context, we present JamLab: a low-cost infrastructure to augment existing LPWN testbeds with accurate interference generation in LPWN testbeds, useful to experimentally investigate the impact of interference on LPWN protocols. We investigate how interference in a shared wireless medium can be mitigated by performing wireless channel energy sensing in low-cost and low-power hardware. For this pupose, we introduce a novel channel quality metric|dubbed CQ|based on availability of the channel over time, which meaningfully quanti es interference. Using data collected from a number of Wi-Fi networks operating in a library building, we show that our metric has strong correlation with the Packet Reception Rate (PRR). We then explore dynamic radio resource adaptation techniques|namely packet size and error correction code overhead optimisations|based on instantaneous spectrum usage as quanti ed by our CQ metric. To conclude, we study emerging fast fading in the composite channel under constructive baseband interference, which has been recently introduced in low-power wireless networks as a promising technique. We show the resulting composite signal becomes vulnerable in the presence of noise, leading to signi cant deterioration of the link, whenever the carriers have similar amplitudes. Overall, our results suggest that the proposed tools and techniques have the potential to improve performance in LPWN operating in the unlicensed spectrum, improving coexistence while maintaining energy-e ciency. Future work includes implementation in next generation platforms, which provides superior computational capacity and more exible radio chip designs.A interferência de r adio afeta o desempenho das redes de comunicação sem o de baixo consumo - low-power wireless networks (LPWN), o que provoca perdas de pacotes, diminuição da e ciência energética, entre outros problemas. A contabilidade das comunicações e importante para a expansão e adoção das LPWN nos diversos domínios de potencial aplicação. Visto que a grande maioria das LPWN partilham o espectro radioelétrico com outras redes sem o, a interferência torna-se um desafio importante. Neste contexto, apresentamos o JamLab: uma infraestrutura de baixo custo para estender a funcionalidade dos ambientes laboratoriais para o estudo experimental do desempenho das LPWN sob interferência. Resultando, assim, numa ferramenta essencial para a adequada verificação dos protocolos de comunicações das LPWN. Para al em disso, a Tese introduz uma nova técnica para avaliar o ambiente radioelétrico e demostra a sua utilização para gerir recursos disponíveis no transceptor rádio, o que permite melhorar a fiabilidade das comunicações, nomeadamente nas plataformas de baixo consumo, garantindo e ciência energética. Assim, apresentamos uma nova métrica| denominada CQ - concebida especificamente para quantificar a qualidade do canal r adio, com base na sua disponibilidade temporal. Mediante dados adquiridos em v arias redes sem o Wi-Fi, instaladas no edifício de uma biblioteca universitária, demonstra-se que esta métrica tem um ótimo desempenho, evidenciando uma elevada correlação com a taxa de receção de pacotes. Investiga-se ainda a potencialidade da nossa métrica CQ para gerir dinamicamente recursos de radio como tamanho de pacote e taxa de correlação de erros dos códigos - baseado em medições instantâneas da qualidade do canal de radio. Posteriormente, estuda-se um modelo de canal composto, sob interferência construtiva de banda-base. A interferência construtiva de banda-base tem sido introduzida recentemente nas LPWN, evidenciando ser uma técnica prometedora no que diz respeito à baixa latência e à contabilidade das comunicações. Na Tese investiga-se o caso crítico em que o sinal composto se torna vulnerável na presença de ruído, o que acaba por deteriorar a qualidade da ligação, no caso em que as amplitudes das distintas portadoras presentes no receptor sejam similares. Finalmente, os resultados obtidos sugerem que as ferramentas e as técnicas propostas têm potencial para melhorar o desempenho das LPWN, num cenário de partilha do espectro radioelétrico com outras redes, melhorando a coexistência e mantendo e ciência energética. Prevê-se como trabalho futuro a implementação das técnicas propostas em plataformas de próxima geração, com maior flexibilidade e poder computacional para o processamento dos sinais rádio.This work was supported by FCT (Portuguese Foundation for Science and Technology) and by ESF (European Social Fund) through POPH (Portuguese Human Potential Operational Program), under PhD grant SFRH/BD/62198/2009; also by FCT under project ref. FCOMP-01-0124-FEDER-014922 (MASQOTS), and EU through the FP7 programme, under grant FP7-ICT-224053 (CONET)
    corecore