209 research outputs found

    Providing Dynamic TXOP for QoS Support of Video Transmission in IEEE 802.11e WLANs

    Get PDF
    The IEEE 802.11e standard introduced by IEEE 802.11 Task Group E (TGe) enhances the Quality of Service (QoS) by means of HCF Controlled Channel Access (HCCA). The scheduler of HCCA allocates Transmission Opportunities (TXOPs) to QoS-enabled Station (QSTA) based on their TS Specifications (TSPECs) negotiated at the traffic setup time so that it is only efficient for Constant Bit Rate (CBR) applications. However, Variable Bit Rate (VBR) traffics are not efficiently supported as they exhibit nondeterministic profile during the time. In this paper, we present a dynamic TXOP assignment Scheduling Algorithm for supporting the video traffics transmission over IEEE 802.11e wireless networks. This algorithm uses a piggybacked information about the size of the subsequent video frames of the uplink traffic to assist the Hybrid Coordinator accurately assign the TXOP according to the fast changes in the VBR profile. The proposed scheduling algorithm has been evaluated using simulation with different variability level video streams. The simulation results show that the proposed algorithm reduces the delay experienced by VBR traffic streams comparable to HCCA scheduler due to the accurate assignment of the TXOP which preserve the channel time for transmission.Comment: arXiv admin note: substantial text overlap with arXiv:1602.0369

    QoS provisioning in multimedia streaming

    Get PDF
    Multimedia consists of voice, video, and data. Sample applications include video conferencing, video on demand, distance learning, distributed games, and movies on demand. Providing Quality of Service (QoS) for multimedia streaming has been a difficult and challenging problem. When multimedia traffic is transported over a network, video traffic, though usually compressed/encoded for bandwidth reduction, still consumes most of the bandwidth. In addition, compressed video streams typically exhibit highly variable bit rates as well as long range dependence properties, thus exacerbating the challenge in meeting the stringent QoS requirements of multimedia streaming with high network utilization. Dynamic bandwidth allocation in which video traffic prediction can play an important role is thus needed. Prediction of the variation of the I frame size using Least Mean Square (LMS) is first proposed. Owing to a smoother sequence, better prediction has been achieved as compared to the composite MPEG video traffic prediction scheme. One problem with this LMS algorithm is its slow convergence. In Variable Bit Rate (VBR) videos characterized by frequent scene changes, the LMS algorithm may result in an extended period of intractability, and thus may experience excessive cell loss during scene changes. A fast convergent non-linear predictor called Variable Step-size Algorithm (VSA) is subsequently proposed to overcome this drawback. The VSA algorithm not only incurs small prediction errors but more importantly achieves fast convergence. It tracks scene changes better than LMS. Bandwidth is then assigned based on the predicted I frame size which is usually the largest in a Group of Picture (GOP). Hence, the Cell Loss Ratio (CLR) can be kept small. By reserving bandwidth at least equal to the predicted one, only prediction errors need to be buffered. Since the prediction error was demonstrated to resemble white noise or exhibits at most short term memory, smaller buffers, less delay, and higher bandwidth utilization can be achieved. In order to further improve network bandwidth utilization, a QoS guaranteed on-line bandwidth allocation is proposed. This method allocates the bandwidth based on the predicted GOP and required QoS. Simulations and analytical results demonstrate that this scheme provides guaranteed delay and achieves higher bandwidth utilization. Network traffic is generally accepted to be self similar. Aggregating self similar traffic can actually intensify rather than diminish burstiness. Thus, traffic prediction plays an important role in network management. Least Mean Kurtosis (LMK), which uses the negated kurtosis of the error signal as the cost function, is proposed to predict the self similar traffic. Simulation results show that the prediction performance is improved greatly as compared to the LMS algorithm. Thus, it can be used to effectively predict the real time network traffic. The Differentiated Service (DiffServ) model is a less complex and more scalable solution for providing QoS to IP as compared to the Integrated Service (IntServ) model. We propose to transport MPEG frames through various service classes of DiffServ according to the MPEG video characteristics. Performance analysis and simulation results show that our proposed approach can not only guarantee QoS but can also achieve high bandwidth utilization. As the end video quality is determined not only by the network QoS but also by the encoded video quality, we consider video quality from these two aspects and further propose to transport spatial scalable encoded videos over DiffServ. Performance analysis and simulation results show that this can provision QoS guarantees. The dropping policy we propose at the egress router can reduce the traffic load as well as the risk of congestion in other domains

    Modeling And Dynamic Resource Allocation For High Definition And Mobile Video Streams

    Get PDF
    Video streaming traffic has been surging in the last few years, which has resulted in an increase of its Internet traffic share on a daily basis. The importance of video streaming management has been emphasized with the advent of High Definition: HD) video streaming, as it requires by its nature more network resources. In this dissertation, we provide a better support for managing HD video traffic over both wireless and wired networks through several contributions. We present a simple, general and accurate video source model: Simplified Seasonal ARIMA Model: SAM). SAM is capable of capturing the statistical characteristics of video traces with less than 5% difference from their calculated optimal models. SAM is shown to be capable of modeling video traces encoded with MPEG-4 Part2, MPEG-4 Part10, and Scalable Video Codec: SVC) standards, using various encoding settings. We also provide a large and publicly-available collection of HD video traces along with their analyses results. These analyses include a full statistical analysis of HD videos, in addition to modeling, factor and cluster analyses. These results show that by using SAM, we can achieve up to 50% improvement in video traffic prediction accuracy. In addition, we developed several video tools, including an HD video traffic generator based on our model. Finally, to improve HD video streaming resource management, we present a SAM-based delay-guaranteed dynamic resource allocation: DRA) scheme that can provide up to 32.4% improvement in bandwidth utilization

    Streaming Video over HTTP with Consistent Quality

    Full text link
    In conventional HTTP-based adaptive streaming (HAS), a video source is encoded at multiple levels of constant bitrate representations, and a client makes its representation selections according to the measured network bandwidth. While greatly simplifying adaptation to the varying network conditions, this strategy is not the best for optimizing the video quality experienced by end users. Quality fluctuation can be reduced if the natural variability of video content is taken into consideration. In this work, we study the design of a client rate adaptation algorithm to yield consistent video quality. We assume that clients have visibility into incoming video within a finite horizon. We also take advantage of the client-side video buffer, by using it as a breathing room for not only network bandwidth variability, but also video bitrate variability. The challenge, however, lies in how to balance these two variabilities to yield consistent video quality without risking a buffer underrun. We propose an optimization solution that uses an online algorithm to adapt the video bitrate step-by-step, while applying dynamic programming at each step. We incorporate our solution into PANDA -- a practical rate adaptation algorithm designed for HAS deployment at scale.Comment: Refined version submitted to ACM Multimedia Systems Conference (MMSys), 201
    corecore