886 research outputs found

    Integrating post-quantum cryptography (NTRU) in the TLS protocol

    Get PDF
    Dissertação de mestrado em Computer ScienceWe aim to integrate new “suites”, using post-quantum authentication and encryption tech niques, in the TLS protocol. Namely, this project is dedicated to integrating algorithms belonging to the NTRU family of cryptossystems in the OpenSSL library and in the Python package “Cryptography”. Even though all the algorithms included in this project have already been imple mented as part of their submissions to the NIST Post-Quantum Standartization project, currently there doesn’t seem to exist a way to perform prototyping and testing of these cryp tossystems in real-life use cases, and it would be interesting to create such tools. We also aim to test if these algorithms could be further optimized for speed and efficiency by comparing the reference implementations (submited to NIST and publicly avail able) with our own implementations that perform some required mathematical operations in a very efficient manner (by using specialized number theory libraries).Pretende-se integrar novas “suites” no protocolo TLS que usem tĂ©cnicas de autenticação e cifra na categoria de tĂ©cnicas pĂłs-quanticas. Nomeadamente, este projecto Ă© dedicado Ă  integração de algoritmos da famĂ­lia NTRU na biblioteca OPENSSL e na “package” Cryptography para o Python. Apesar de todos os algoritmos contemplados neste projeto jĂĄ terem sido implementa dos no Ăąmbito da sua submissĂŁo ao NIST Post-Quantum Standartization project, actualmente nĂŁo parece existir forma de testar e prototipar estes criptossistemas em casos de uso realistas, e seria interessante desenvolver ferramentas que o permitam. Pretende-se tambĂ©m aferir se estes algoritmos podem ser optimizados em eficiĂȘncia e velocidade de execução, comparando as implementaçÔes de referĂȘncia (submetidas ao NIST e disponiveis publicamente) com as nossas implementaçÔes, que efectuam algumas operaçÔes matemĂĄticas necessĂĄrias de forma muito eficiente (com recusro a bibliotecas de teoria de nĂșmeros especializadas)

    qSCMS: Post-quantum certificate provisioning process for V2X

    Get PDF
    Security and privacy are paramount in the field of intelligent transportation systems (ITS). This motivates many proposals aiming to create a Vehicular Public Key Infrastructure (VPKI) for managing vehicles’ certificates. Among them, the Security Credential Management System (SCMS) is one of the leading contenders for standardization in the US. SCMS provides a wide array security features, which include (but are not limited to) data authentication, vehicle privacy and revocation of misbehaving vehicles. In addition, the key provisioning process in SCMS is realized via the so-called butterfly key expansion, which issues arbitrarily large batches of pseudonym certificates in response to a single client request. Although promising, this process is based on classical elliptic curve cryptography (ECC), which is known to be susceptible to quantum attacks. Aiming to address this issue, in this work we propose a post-quantum butterfly key expansion process. The proposed protocol relies on lattice-based cryptography, which leads to competitive key, ciphertext and signature sizes. Moreover, it provides low bandwidth utilization when compared with other lattice-based schemes, and, like the original SCMS, addresses the security and functionality requirements of vehicular communication

    Zero-Knowledge Arguments for Matrix-Vector Relations and Lattice-Based Group Encryption

    Get PDF
    International audienceGroup encryption (GE) is the natural encryption analogue of group signatures in that it allows verifiably encrypting messages for some anonymous member of a group while providing evidence that the receiver is a properly certified group member. Should the need arise, an opening authority is capable of identifying the receiver of any ciphertext. As introduced by Kiayias, Tsiounis and Yung (Asiacrypt'07), GE is motivated by applications in the context of oblivious retriever storage systems, anonymous third parties and hierarchical group signatures. This paper provides the first realization of group encryption under lattice assumptions. Our construction is proved secure in the standard model (assuming interaction in the proving phase) under the Learning-With-Errors (LWE) and Short-Integer-Solution (SIS) assumptions. As a crucial component of our system, we describe a new zero-knowledge argument system allowing to demonstrate that a given ciphertext is a valid encryption under some hidden but certified public key, which incurs to prove quadratic statements about LWE relations. Specifically, our protocol allows arguing knowledge of witnesses consisting of X ∈ Z m×n q , s ∈ Z n q and a small-norm e ∈ Z m which underlie a public vector b = X · s + e ∈ Z m q while simultaneously proving that the matrix X ∈ Z m×n q has been correctly certified. We believe our proof system to be useful in other applications involving zero-knowledge proofs in the lattice setting

    Still Wrong Use of Pairings in Cryptography

    Get PDF
    Several pairing-based cryptographic protocols are recently proposed with a wide variety of new novel applications including the ones in emerging technologies like cloud computing, internet of things (IoT), e-health systems and wearable technologies. There have been however a wide range of incorrect use of these primitives. The paper of Galbraith, Paterson, and Smart (2006) pointed out most of the issues related to the incorrect use of pairing-based cryptography. However, we noticed that some recently proposed applications still do not use these primitives correctly. This leads to unrealizable, insecure or too inefficient designs of pairing-based protocols. We observed that one reason is not being aware of the recent advancements on solving the discrete logarithm problems in some groups. The main purpose of this article is to give an understandable, informative, and the most up-to-date criteria for the correct use of pairing-based cryptography. We thereby deliberately avoid most of the technical details and rather give special emphasis on the importance of the correct use of bilinear maps by realizing secure cryptographic protocols. We list a collection of some recent papers having wrong security assumptions or realizability/efficiency issues. Finally, we give a compact and an up-to-date recipe of the correct use of pairings.Comment: 25 page

    Efficient Dynamic Group Signature Scheme with Verifier Local Revocation and Time-Bound Keys using Lattices

    Get PDF
    Revocation is an important feature of group signature schemes. Verifier Local Revocation (VLR) is a popular revocation mechanism which involves only verifiers in the revocation process. In VLR, a revocation list is maintained to store the information about revoked users. The verification cost of VLR based schemes islinearly proportional to the size of recvocation list. In many applications, the size of revocation list grows with time, which makes the verification process expensive. In this paper, we propose a lattice based dynamic group signature using VLR and time bound keys to reduce the size of revocation list to speed up the verification process. In the proposed scheme, an expiration date is fixed for signing key of each group member, and verifiers can find out (at constantcost) if a signature is generated using an expired key. Hence revocation information of members who are revoked before signing key expiry date (premature revocation) are kept in revocation list, and other members are part of natural revocation. This leads to a significant saving on the revocation check by assuming natural revocation accounts for large fraction of the total revocation. This scheme also takes care of non-forgeability of signing key expiry date
    • 

    corecore