399 research outputs found

    Reliable Hardware Architectures of CORDIC Algorithm with Fixed Angle of Rotations

    Get PDF
    Fixed-angle rotation operation of vectors is widely used in signal processing, graphics, and robotics. Various optimized coordinate rotation digital computer (CORDIC) designs have been proposed for uniform rotation of vectors through known and specified angles. Nevertheless, in the presence of faults, such hardware architectures are potentially vulnerable. In this thesis, we propose efficient error detection schemes for two fixed-angle rotation designs, i.e., the Interleaved Scaling and Cascaded Single-rotation CORDIC. To the best of our knowledge, this work is the first in providing reliable architectures for these variants of CORDIC. The former is suitable for low-area applications and, hence, we propose recomputing with encoded operands schemes which add negligible area overhead to the designs. Moreover, the proposed error detection schemes for the latter variant are optimized for efficient applications which hamper the performance of the architectures negligibly. We present three variants of recomputing with encoded operands to detect both transient and permanent faults, coupled with signature-based schemes. The overheads of the proposed designs are assessed through Xilinx FPGA implementations and their effectiveness is benchmarked through error simulations. The results give confidence for the proposed efficient architectures which can be tailored based on the reliability requirements and the overhead to be tolerated

    FPGA Implementation of Fast Fourier Transform Core Using NEDA

    Get PDF
    Transforms like DFT are a major block in communication systems such as OFDM, etc. This thesis reports architecture of a DFT core using NEDA. The advantage of the proposed architecture is that the entire transform can be implemented using adder/subtractors and shifters only, thus minimising the hardware requirement compared to other architectures. The proposed design is implemented for 16-bit data path (12–bit for comparison) considering both integer representation as well as fixed point representation, thus increasing the scope of usage. The proposed design is mapped on to Xilinx XC2VP30 FPGA, which is fabricated using 130 nm process technology. The maximum on board frequency of operation of the proposed design is 122 MHz. NEDA is one of the techniques to implement many signal processing systems that require multiply and accumulate units. FFT is one of the most employed blocks in many communication and signal processing systems. The FPGA implementation of a 16 point radix-4 complex FFT is proposed. The proposed design has improvement in terms of hardware utilization compared to traditional methods. The design has been implemented on a range of FPGAs to compare the performance. The maximum frequency achieved is 114.27 MHz on XC5VLX330 FPGA and the maximum throughput, 1828.32 Mbit/s and minimum slice delay product, 9.18. The design is also implemented using synopsys DC synthesis in both 65 nm and 180 nm technology libraries. The advantages of multiplier-less architectures are reduced hardware and improved latency. The multiplier-less architectures for the implementation of radix-2^2 folded pipelined complex FFT core are based on NEDA. The number of points considered in the work is sixteen and the folding is done by a factor of four. The proposed designs are implemented on Xilinx XC5VSX240T FPGA. Proposed designs based on NEDA have reduced area over 83%. The observed slice-delay product for NEDA based designs are 2.196 and 5.735

    Efficient floating-point givens rotation unit

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in Circuits, Systems, and Signal Processing.High-throughput QR decomposition is a key operation in many advanced signal processing and communication applications. For some of these applications, using floating-point computation is becoming almost compulsory. However, there are scarce works in hardware implementations of floating-point QR decomposition for embedded systems. In this paper, we propose a very efficient high-throughput floating-point Givens rotation unit for QR decomposition. Moreover, the initial proposed design for conventional number formats is enhanced by using the new Half-Unit Biased format. The provided error analysis shows the effectiveness of our proposals and the trade-off of different implementation parameters. We also present FPGA implementation results and a thorough comparison between both approaches. These implementation results also reveal outstanding improvements compared to other previous similar designs in terms of area, latency, and throughput.This work was supported in part by following Spanish projects: TIN2016-80920-R, and JA2012 P12-TIC-169

    Hardware implementation of multiple-input multiple-output transceiver for wireless communication

    Get PDF
    This dissertation proposes an efficient hardware implementation scheme for iterative multi-input multi-output orthogonal frequency-division multiplexing (MIMO-OFDM) transceiver. The transmitter incorporates linear precoder designed with instantaneous channel state information (CSI). The receiver implements MMSE-IC (minimum mean square error interference cancelation) detector, channel estimator, low-density parity-check (LDPC) decoder and other supporting modules. The proposed implementation uses QR decomposition (QRD) of complex-valued matrices with four co-ordinate rotation digital computer (CORDIC) cores and back substitution to achieve the best tradeoff between resource and throughput. The MIMO system is used in field test and the results indicate that the instantaneous CSI varies very fast in practices and the performance of linear precoder designed with instantaneous CSI is limited. Instead, statistic CSI had to be used. This dissertation also proposes a higher-rank principle Kronecker model (PKM). That exploits the statistic CSI to simulate the fading channels. The PKM is constructed by decomposing the channel correlation matrices with the higher-order singular value decomposition (HOSVD) method. The proposed PKM-HOSVD model is validated by extensive field experiments conducted for 4-by-4 MIMO systems in both indoor and outdoor environments. The results confirm that the statistic CSI varies slowly and the PKM-HOSVD will be helpful in the design of linear precoders. --Abstract, page iv

    From algorithm to implementation: a case study on blind carrier synchronization

    Get PDF
    corecore