281 research outputs found

    Intelligent Embedded Vision for Summarization of Multi-View Videos in IIoT

    Get PDF
    Nowadays, video sensors are used on a large scale for various applications including security monitoring and smart transportation. However, the limited communication bandwidth and storage constraints make it challenging to process such heterogeneous nature of Big Data in real time. Multi-view video summarization (MVS) enables us to suppress redundant data in distributed video sensors settings. The existing MVS approaches process video data in offline manner by transmitting it to the local or cloud server for analysis, which requires extra streaming to conduct summarization, huge bandwidth, and are not applicable for integration with industrial internet of things (IIoT). This paper presents a light-weight CNN and IIoT based computationally intelligent (CI) MVS framework. Our method uses an IIoT network containing smart devices, Raspberry Pi (clients and master) with embedded cameras to capture multi-view video (MVV) data. Each client Raspberry Pi (RPi) detects target in frames via light-weight CNN model, analyzes these targets for traffic and crowd density, and searches for suspicious objects to generate alert in the IIoT network. The frames of each client RPi are encoded and transmitted with approximately 17.02% smaller size of each frame to master RPi for final MVS. Empirical analysis shows that our proposed framework can be used in industrial environments for various applications such as security and smart transportation and can be proved beneficial for saving resources

    A comprehensive survey of multi-view video summarization

    Full text link
    [EN] There has been an exponential growth in the amount of visual data on a daily basis acquired from single or multi-view surveillance camera networks. This massive amount of data requires efficient mechanisms such as video summarization to ensure that only significant data are reported and the redundancy is reduced. Multi-view video summarization (MVS) is a less redundant and more concise way of providing information from the video content of all the cameras in the form of either keyframes or video segments. This paper presents an overview of the existing strategies proposed for MVS, including their advantages and drawbacks. Our survey covers the genericsteps in MVS, such as the pre-processing of video data, feature extraction, and post-processing followed by summary generation. We also describe the datasets that are available for the evaluation of MVS. Finally, we examine the major current issues related to MVS and put forward the recommendations for future research(1). (C) 2020 Elsevier Ltd. All rights reserved.This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2019R1A2B5B01070067)Hussain, T.; Muhammad, K.; Ding, W.; Lloret, J.; Baik, SW.; De Albuquerque, VHC. (2021). A comprehensive survey of multi-view video summarization. Pattern Recognition. 109:1-15. https://doi.org/10.1016/j.patcog.2020.10756711510

    An Efficient Deep Learning Framework for Intelligent Energy Management in IoT Networks

    Full text link
    [EN] Green energy management is an economical solution for better energy usage, but the employed literature lacks focusing on the potentials of edge intelligence in controllable Internet of Things (IoT). Therefore, in this article, we focus on the requirements of todays' smart grids, homes, and industries to propose a deep-learning-based framework for intelligent energy management. We predict future energy consumption for short intervals of time as well as provide an efficient way of communication between energy distributors and consumers. The key contributions include edge devices-based real-time energy management via common cloud-based data supervising server, optimal normalization technique selection, and a novel sequence learning-based energy forecasting mechanism with reduced time complexity and lowest error rates. In the proposed framework, edge devices relate to a common cloud server in an IoT network that communicates with the associated smart grids to effectively continue the energy demand and response phenomenon. We apply several preprocessing techniques to deal with the diverse nature of electricity data, followed by an efficient decision-making algorithm for short-term forecasting and implement it over resource-constrained devices. We perform extensive experiments and witness 0.15 and 3.77 units reduced mean-square error (MSE) and root MSE (RMSE) for residential and commercial datasets, respectively.This work was supported in part by the National Research Foundation of Korea Grant Funded by the Korea Government (MSIT) under Grant 2019M3F2A1073179; in part by the "Ministerio de Economia y Competitividad" in the "Programa Estatal de Fomento de la Investigacion Cientifica y Tecnica de Excelencia, Subprograma Estatal de Generacion de Conocimiento" Within the Project under Grant TIN2017-84802-C2-1-P; and in part by the European Union through the ERANETMED (Euromediterranean Cooperation through ERANET Joint Activities and Beyond) Project ERANETMED3-227 SMARTWATIR.Han, T.; Muhammad, K.; Hussain, T.; Lloret, J.; Baik, SW. (2021). An Efficient Deep Learning Framework for Intelligent Energy Management in IoT Networks. IEEE Internet of Things. 8(5):3170-3179. https://doi.org/10.1109/JIOT.2020.3013306S317031798

    Intelligent and Energy-Efficient Data Prioritization in Green Smart Cities: Current Challenges and Future Directions

    Full text link
    [EN] The excessive use of digital devices such as cameras and smartphones in smart cities has produced huge data repositories that require automatic tools for efficient browsing, searching, and management. Data prioritization (DP) is a technique that produces a condensed form of the original data by analyzing its contents. Current DP studies are either concerned with data collected through stable capturing devices or focused on prioritization of data of a certain type such as surveillance, sports, or industry. This necessitates the need for DP tools that intelligently and cost-effectively prioritize a large variety of data for detecting abnormal events and hence effectively manage them, thereby making the current smart cities greener. In this article, we first carry out an in-depth investigation of the recent approaches and trends of DP for data of different natures, genres, and domains of two decades in green smart cities. Next, we propose an energy-efficient DP framework by intelligent integration of the Internet of Things, artificial intelligence, and big data analytics. Experimental evaluation on real-world surveillance data verifies the energy efficiency and applicability of this framework in green smart cities. Finally, this article highlights the key challenges of DP, its future requirements, and propositions for integration into green smart citiesThis work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (no. 2016R-1A2B4011712).Muhammad, K.; Lloret, J.; Baik, SW. (2019). Intelligent and Energy-Efficient Data Prioritization in Green Smart Cities: Current Challenges and Future Directions. IEEE Communications Magazine. 57(2):60-65. https://doi.org/10.1109/MCOM.2018.1800371S606557

    Fuzzy Logic in Surveillance Big Video Data Analysis: Comprehensive Review, Challenges, and Research Directions

    Get PDF
    CCTV cameras installed for continuous surveillance generate enormous amounts of data daily, forging the term “Big Video Data” (BVD). The active practice of BVD includes intelligent surveillance and activity recognition, among other challenging tasks. To efficiently address these tasks, the computer vision research community has provided monitoring systems, activity recognition methods, and many other computationally complex solutions for the purposeful usage of BVD. Unfortunately, the limited capabilities of these methods, higher computational complexity, and stringent installation requirements hinder their practical implementation in real-world scenarios, which still demand human operators sitting in front of cameras to monitor activities or make actionable decisions based on BVD. The usage of human-like logic, known as fuzzy logic, has been employed emerging for various data science applications such as control systems, image processing, decision making, routing, and advanced safety-critical systems. This is due to its ability to handle various sources of real world domain and data uncertainties, generating easily adaptable and explainable data-based models. Fuzzy logic can be effectively used for surveillance as a complementary for huge-sized artificial intelligence models and tiresome training procedures. In this paper, we draw researchers’ attention towards the usage of fuzzy logic for surveillance in the context of BVD. We carry out a comprehensive literature survey of methods for vision sensory data analytics that resort to fuzzy logic concepts. Our overview highlights the advantages, downsides, and challenges in existing video analysis methods based on fuzzy logic for surveillance applications. We enumerate and discuss the datasets used by these methods, and finally provide an outlook towards future research directions derived from our critical assessment of the efforts invested so far in this exciting field

    Deep neural networks in the cloud: Review, applications, challenges and research directions

    Get PDF
    Deep neural networks (DNNs) are currently being deployed as machine learning technology in a wide range of important real-world applications. DNNs consist of a huge number of parameters that require millions of floating-point operations (FLOPs) to be executed both in learning and prediction modes. A more effective method is to implement DNNs in a cloud computing system equipped with centralized servers and data storage sub-systems with high-speed and high-performance computing capabilities. This paper presents an up-to-date survey on current state-of-the-art deployed DNNs for cloud computing. Various DNN complexities associated with different architectures are presented and discussed alongside the necessities of using cloud computing. We also present an extensive overview of different cloud computing platforms for the deployment of DNNs and discuss them in detail. Moreover, DNN applications already deployed in cloud computing systems are reviewed to demonstrate the advantages of using cloud computing for DNNs. The paper emphasizes the challenges of deploying DNNs in cloud computing systems and provides guidance on enhancing current and new deployments.The EGIA project (KK-2022/00119The Consolidated Research Group MATHMODE (IT1456-22

    Deep Features and Clustering Based Keyframes Selection with Security

    Get PDF
    The digital world is developing more quickly than ever. Multimedia processing and distribution, however become vulnerable issues due to the enormous quantity and significance of vital information. Therefore, extensive technologies and algorithms are required for the safe transmission of messages, images, and video files. This paper proposes a secure framework by acute integration of video summarization and image encryption. Three parts comprise the proposed cryptosystem framework. The informative frames are first extracted using an efficient and lightweight technique that make use of the color histogram-clustering (RGB-HSV) approach's processing capabilities. Each frame of a video is represented by deep features, which are based on an enhanced pre-trained Inception-v3 network. After that summary is obtain using the K-means optimal clustering algorithm. The representative keyframes then extracted using the clusters highest possible entropy nodes. Experimental validation on two well-known standard datasets demonstrates the proposed methods superiority to numerous state-of-the-art approaches. Finally, the proposed framework performs an efficient image encryption and decryption algorithm by employing a general linear group function GLn (F). The analysis and testing outcomes prove the superiority of the proposed adaptive RSA
    corecore