1,090 research outputs found

    Broadcasting in Noisy Radio Networks

    Full text link
    The widely-studied radio network model [Chlamtac and Kutten, 1985] is a graph-based description that captures the inherent impact of collisions in wireless communication. In this model, the strong assumption is made that node vv receives a message from a neighbor if and only if exactly one of its neighbors broadcasts. We relax this assumption by introducing a new noisy radio network model in which random faults occur at senders or receivers. Specifically, for a constant noise parameter p[0,1)p \in [0,1), either every sender has probability pp of transmitting noise or every receiver of a single transmission in its neighborhood has probability pp of receiving noise. We first study single-message broadcast algorithms in noisy radio networks and show that the Decay algorithm [Bar-Yehuda et al., 1992] remains robust in the noisy model while the diameter-linear algorithm of Gasieniec et al., 2007 does not. We give a modified version of the algorithm of Gasieniec et al., 2007 that is robust to sender and receiver faults, and extend both this modified algorithm and the Decay algorithm to robust multi-message broadcast algorithms. We next investigate the extent to which (network) coding improves throughput in noisy radio networks. We address the previously perplexing result of Alon et al. 2014 that worst case coding throughput is no better than worst case routing throughput up to constants: we show that the worst case throughput performance of coding is, in fact, superior to that of routing -- by a Θ(log(n))\Theta(\log(n)) gap -- provided receiver faults are introduced. However, we show that any coding or routing scheme for the noiseless setting can be transformed to be robust to sender faults with only a constant throughput overhead. These transformations imply that the results of Alon et al., 2014 carry over to noisy radio networks with sender faults.Comment: Principles of Distributed Computing 201

    Doing-it-All with Bounded Work and Communication

    Get PDF
    We consider the Do-All problem, where pp cooperating processors need to complete tt similar and independent tasks in an adversarial setting. Here we deal with a synchronous message passing system with processors that are subject to crash failures. Efficiency of algorithms in this setting is measured in terms of work complexity (also known as total available processor steps) and communication complexity (total number of point-to-point messages). When work and communication are considered to be comparable resources, then the overall efficiency is meaningfully expressed in terms of effort defined as work + communication. We develop and analyze a constructive algorithm that has work O(t+plogp(plogp+tlogt))O( t + p \log p\, (\sqrt{p\log p}+\sqrt{t\log t}\, ) ) and a nonconstructive algorithm that has work O(t+plog2p)O(t +p \log^2 p). The latter result is close to the lower bound Ω(t+plogp/loglogp)\Omega(t + p \log p/ \log \log p) on work. The effort of each of these algorithms is proportional to its work when the number of crashes is bounded above by cpc\,p, for some positive constant c<1c < 1. We also present a nonconstructive algorithm that has effort O(t+p1.77)O(t + p ^{1.77})

    Deterministic Computations on a PRAM with Static Processor and Memory Faults.

    Get PDF
    We consider Parallel Random Access Machine (PRAM) which has some processors and memory cells faulty. The faults considered are static, i.e., once the machine starts to operate, the operational/faulty status of PRAM components does not change. We develop a deterministic simulation of a fully operational PRAM on a similar faulty machine which has constant fractions of faults among processors and memory cells. The simulating PRAM has nn processors and mm memory cells, and simulates a PRAM with nn processors and a constant fraction of mm memory cells. The simulation is in two phases: it starts with preprocessing, which is followed by the simulation proper performed in a step-by-step fashion. Preprocessing is performed in time O((mn+logn)logn)O((\frac{m}{n}+ \log n)\log n). The slowdown of a step-by-step part of the simulation is O(logm)O(\log m)

    Narwhal and Tusk: A DAG-based Mempool and Efficient BFT Consensus

    Get PDF
    We propose separating the task of reliable transaction dissemination from transaction ordering, to enable high-performance Byzantine fault-tolerant quorum-based consensus. We design and evaluate a mempool protocol, Narwhal, specializing in high-throughput reliable dissemination and storage of causal histories of transactions. Narwhal tolerates an asynchronous network and maintains high performance despite failures. Narwhal is designed to easily scale-out using multiple workers at each validator, and we demonstrate that there is no foreseeable limit to the throughput we can achieve. Composing Narwhal with a partially synchronous consensus protocol (Narwhal-HotStuff) yields significantly better throughput even in the presence of faults or intermittent loss of liveness due to asynchrony. However, loss of liveness can result in higher latency. To achieve overall good performance when faults occur we design Tusk, a zero-message overhead asynchronous consensus protocol, to work with Narwhal. We demonstrate its high performance under a variety of configurations and faults. As a summary of results, on a WAN, Narwhal-Hotstuff achieves over 130,000 tx/sec at less than 2-sec latency compared with 1,800 tx/sec at 1-sec latency for Hotstuff. Additional workers increase throughput linearly to 600,000 tx/sec without any latency increase. Tusk achieves 160,000 tx/sec with about 3 seconds latency. Under faults, both protocols maintain high throughput, but Narwhal-HotStuff suffers from increased latency

    Broadcast CONGEST Algorithms against Adversarial Edges

    Get PDF
    We consider the corner-stone broadcast task with an adaptive adversary that controls a fixed number of tt edges in the input communication graph. In this model, the adversary sees the entire communication in the network and the random coins of the nodes, while maliciously manipulating the messages sent through a set of tt edges (unknown to the nodes). Since the influential work of [Pease, Shostak and Lamport, JACM'80], broadcast algorithms against plentiful adversarial models have been studied in both theory and practice for over more than four decades. Despite this extensive research, there is no round efficient broadcast algorithm for general graphs in the CONGEST model of distributed computing. We provide the first round-efficient broadcast algorithms against adaptive edge adversaries. Our two key results for nn-node graphs of diameter DD are as follows: 1. For t=1t=1, there is a deterministic algorithm that solves the problem within O~(D2)\widetilde{O}(D^2) rounds, provided that the graph is 3 edge-connected. This round complexity beats the natural barrier of O(D3)O(D^3) rounds, the existential lower bound on the maximal length of 33 edge-disjoint paths between a given pair of nodes in GG. This algorithm can be extended to a O~(DO(t))\widetilde{O}(D^{O(t)})-round algorithm against tt adversarial edges in (2t+1)(2t+1) edge-connected graphs. 2. For expander graphs with minimum degree of Ω(t2logn)\Omega(t^2\log n), there is an improved broadcast algorithm with O(tlog2n)O(t \log ^2 n) rounds against tt adversarial edges. This algorithm exploits the connectivity and conductance properties of G-subgraphs obtained by employing the Karger's edge sampling technique. Our algorithms mark a new connection between the areas of fault-tolerant network design and reliable distributed communication.Comment: accepted to DISC2

    Resilient Network Coding in the Presence of Byzantine Adversaries

    Get PDF
    Network coding substantially increases network throughput. But since it involves mixing of information inside the network, a single corrupted packet generated by a malicious node can end up contaminating all the information reaching a destination, preventing decoding. This paper introduces distributed polynomial-time rate-optimal network codes that work in the presence of Byzantine nodes. We present algorithms that target adversaries with different attacking capabilities. When the adversary can eavesdrop on all links and jam zO links, our first algorithm achieves a rate of C - 2zO, where C is the network capacity. In contrast, when the adversary has limited eavesdropping capabilities, we provide algorithms that achieve the higher rate of C - zO. Our algorithms attain the optimal rate given the strength of the adversary. They are information-theoretically secure. They operate in a distributed manner, assume no knowledge of the topology, and can be designed and implemented in polynomial time. Furthermore, only the source and destination need to be modified; nonmalicious nodes inside the network are oblivious to the presence of adversaries and implement a classical distributed network code. Finally, our algorithms work over wired and wireless networks
    corecore