4,283 research outputs found

    Distributed Deterministic Broadcasting in Uniform-Power Ad Hoc Wireless Networks

    Full text link
    Development of many futuristic technologies, such as MANET, VANET, iThings, nano-devices, depend on efficient distributed communication protocols in multi-hop ad hoc networks. A vast majority of research in this area focus on design heuristic protocols, and analyze their performance by simulations on networks generated randomly or obtained in practical measurements of some (usually small-size) wireless networks. %some library. Moreover, they often assume access to truly random sources, which is often not reasonable in case of wireless devices. In this work we use a formal framework to study the problem of broadcasting and its time complexity in any two dimensional Euclidean wireless network with uniform transmission powers. For the analysis, we consider two popular models of ad hoc networks based on the Signal-to-Interference-and-Noise Ratio (SINR): one with opportunistic links, and the other with randomly disturbed SINR. In the former model, we show that one of our algorithms accomplishes broadcasting in O(Dlog2n)O(D\log^2 n) rounds, where nn is the number of nodes and DD is the diameter of the network. If nodes know a priori the granularity gg of the network, i.e., the inverse of the maximum transmission range over the minimum distance between any two stations, a modification of this algorithm accomplishes broadcasting in O(Dlogg)O(D\log g) rounds. Finally, we modify both algorithms to make them efficient in the latter model with randomly disturbed SINR, with only logarithmic growth of performance. Ours are the first provably efficient and well-scalable, under the two models, distributed deterministic solutions for the broadcast task.Comment: arXiv admin note: substantial text overlap with arXiv:1207.673

    On the Impact of Geometry on Ad Hoc Communication in Wireless Networks

    Full text link
    In this work we address the question how important is the knowledge of geometric location and network density to the efficiency of (distributed) wireless communication in ad hoc networks. We study fundamental communication task of broadcast and develop well-scalable, randomized algorithms that do not rely on GPS information, and which efficiency formulas do not depend on how dense the geometric network is. We consider two settings: with and without spontaneous wake-up of nodes. In the former setting, in which all nodes start the protocol at the same time, our algorithm accomplishes broadcast in O(Dlogn+log2n)O(D\log n + \log^2 n) rounds under the SINR model, with high probability (whp), where DD is the diameter of the communication graph and nn is the number of stations. In the latter setting, in which only the source node containing the original message is active in the beginning, we develop a slightly slower algorithm working in O(Dlog2n)O(D\log^2 n) rounds whp. Both algorithms are based on a novel distributed coloring method, which is of independent interest and potential applicability to other communication tasks under the SINR wireless model

    Randomized Initialization of a Wireless Multihop Network

    Full text link
    Address autoconfiguration is an important mechanism required to set the IP address of a node automatically in a wireless network. The address autoconfiguration, also known as initialization or naming, consists to give a unique identifier ranging from 1 to nn for a set of nn indistinguishable nodes. We consider a wireless network where nn nodes (processors) are randomly thrown in a square XX, uniformly and independently. We assume that the network is synchronous and two nodes are able to communicate if they are within distance at most of rr of each other (rr is the transmitting/receiving range). The model of this paper concerns nodes without the collision detection ability: if two or more neighbors of a processor uu transmit concurrently at the same time, then uu would not receive either messages. We suppose also that nodes know neither the topology of the network nor the number of nodes in the network. Moreover, they start indistinguishable, anonymous and unnamed. Under this extremal scenario, we design and analyze a fully distributed protocol to achieve the initialization task for a wireless multihop network of nn nodes uniformly scattered in a square XX. We show how the transmitting range of the deployed stations can affect the typical characteristics such as the degrees and the diameter of the network. By allowing the nodes to transmit at a range r= \sqrt{\frac{(1+\ell) \ln{n} \SIZE}{\pi n}} (slightly greater than the one required to have a connected network), we show how to design a randomized protocol running in expected time O(n3/2log2n)O(n^{3/2} \log^2{n}) in order to assign a unique number ranging from 1 to nn to each of the nn participating nodes

    Message and time efficient multi-broadcast schemes

    Full text link
    We consider message and time efficient broadcasting and multi-broadcasting in wireless ad-hoc networks, where a subset of nodes, each with a unique rumor, wish to broadcast their rumors to all destinations while minimizing the total number of transmissions and total time until all rumors arrive to their destination. Under centralized settings, we introduce a novel approximation algorithm that provides almost optimal results with respect to the number of transmissions and total time, separately. Later on, we show how to efficiently implement this algorithm under distributed settings, where the nodes have only local information about their surroundings. In addition, we show multiple approximation techniques based on the network collision detection capabilities and explain how to calibrate the algorithms' parameters to produce optimal results for time and messages.Comment: In Proceedings FOMC 2013, arXiv:1310.459

    Data Dissemination in Unified Dynamic Wireless Networks

    Full text link
    We give efficient algorithms for the fundamental problems of Broadcast and Local Broadcast in dynamic wireless networks. We propose a general model of communication which captures and includes both fading models (like SINR) and graph-based models (such as quasi unit disc graphs, bounded-independence graphs, and protocol model). The only requirement is that the nodes can be embedded in a bounded growth quasi-metric, which is the weakest condition known to ensure distributed operability. Both the nodes and the links of the network are dynamic: nodes can come and go, while the signal strength on links can go up or down. The results improve some of the known bounds even in the static setting, including an optimal algorithm for local broadcasting in the SINR model, which is additionally uniform (independent of network size). An essential component is a procedure for balancing contention, which has potentially wide applicability. The results illustrate the importance of carrier sensing, a stock feature of wireless nodes today, which we encapsulate in primitives to better explore its uses and usefulness.Comment: 28 pages, 2 figure

    Extremal Properties of Three Dimensional Sensor Networks with Applications

    Full text link
    In this paper, we analyze various critical transmitting/sensing ranges for connectivity and coverage in three-dimensional sensor networks. As in other large-scale complex systems, many global parameters of sensor networks undergo phase transitions: For a given property of the network, there is a critical threshold, corresponding to the minimum amount of the communication effort or power expenditure by individual nodes, above (resp. below) which the property exists with high (resp. a low) probability. For sensor networks, properties of interest include simple and multiple degrees of connectivity/coverage. First, we investigate the network topology according to the region of deployment, the number of deployed sensors and their transmitting/sensing ranges. More specifically, we consider the following problems: Assume that nn nodes, each capable of sensing events within a radius of rr, are randomly and uniformly distributed in a 3-dimensional region R\mathcal{R} of volume VV, how large must the sensing range be to ensure a given degree of coverage of the region to monitor? For a given transmission range, what is the minimum (resp. maximum) degree of the network? What is then the typical hop-diameter of the underlying network? Next, we show how these results affect algorithmic aspects of the network by designing specific distributed protocols for sensor networks
    corecore