58 research outputs found

    Volumetric MRI Reconstruction from 2D Slices in the Presence of Motion

    Get PDF
    Despite recent advances in acquisition techniques and reconstruction algorithms, magnetic resonance imaging (MRI) remains challenging in the presence of motion. To mitigate this, ultra-fast two-dimensional (2D) MRI sequences are often used in clinical practice to acquire thick, low-resolution (LR) 2D slices to reduce in-plane motion. The resulting stacks of thick 2D slices typically provide high-quality visualizations when viewed in the in-plane direction. However, the low spatial resolution in the through-plane direction in combination with motion commonly occurring between individual slice acquisitions gives rise to stacks with overall limited geometric integrity. In further consequence, an accurate and reliable diagnosis may be compromised when using such motion-corrupted, thick-slice MRI data. This thesis presents methods to volumetrically reconstruct geometrically consistent, high-resolution (HR) three-dimensional (3D) images from motion-corrupted, possibly sparse, low-resolution 2D MR slices. It focuses on volumetric reconstructions techniques using inverse problem formulations applicable to a broad field of clinical applications in which associated motion patterns are inherently different, but the use of thick-slice MR data is current clinical practice. In particular, volumetric reconstruction frameworks are developed based on slice-to-volume registration with inter-slice transformation regularization and robust, complete-outlier rejection for the reconstruction step that can either avoid or efficiently deal with potential slice-misregistrations. Additionally, this thesis describes efficient Forward-Backward Splitting schemes for image registration for any combination of differentiable (not necessarily convex) similarity measure and convex (not necessarily smooth) regularization with a tractable proximal operator. Experiments are performed on fetal and upper abdominal MRI, and on historical, printed brain MR films associated with a uniquely long-term study dating back to the 1980s. The results demonstrate the broad applicability of the presented frameworks to achieve robust reconstructions with the potential to improve disease diagnosis and patient management in clinical practice

    Quantitative magnetic resonance image analysis via the EM algorithm with stochastic variation

    Full text link
    Quantitative Magnetic Resonance Imaging (qMRI) provides researchers insight into pathological and physiological alterations of living tissue, with the help of which researchers hope to predict (local) therapeutic efficacy early and determine optimal treatment schedule. However, the analysis of qMRI has been limited to ad-hoc heuristic methods. Our research provides a powerful statistical framework for image analysis and sheds light on future localized adaptive treatment regimes tailored to the individual's response. We assume in an imperfect world we only observe a blurred and noisy version of the underlying pathological/physiological changes via qMRI, due to measurement errors or unpredictable influences. We use a hidden Markov random field to model the spatial dependence in the data and develop a maximum likelihood approach via the Expectation--Maximization algorithm with stochastic variation. An important improvement over previous work is the assessment of variability in parameter estimation, which is the valid basis for statistical inference. More importantly, we focus on the expected changes rather than image segmentation. Our research has shown that the approach is powerful in both simulation studies and on a real dataset, while quite robust in the presence of some model assumption violations.Comment: Published in at http://dx.doi.org/10.1214/07-AOAS157 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Generalized fuzzy clustering for segmentation of multi-spectral magnetic resonance images.

    Get PDF
    An integrated approach for multi-spectral segmentation of MR images is presented. This method is based on the fuzzy c-means (FCM) and includes bias field correction and contextual constraints over spatial intensity distribution and accounts for the non-spherical cluster\u27s shape in the feature space. The bias field is modeled as a linear combination of smooth polynomial basis functions for fast computation in the clustering iterations. Regularization terms for the neighborhood continuity of intensity are added into the FCM cost functions. To reduce the computational complexity, the contextual regularizations are separated from the clustering iterations. Since the feature space is not isotropic, distance measure adopted in Gustafson-Kessel (G-K) algorithm is used instead of the Euclidean distance, to account for the non-spherical shape of the clusters in the feature space. These algorithms are quantitatively evaluated on MR brain images using the similarity measures

    Volume and shape in feature space on adaptive FCM in MRI segmentation.

    Get PDF
    Intensity non-uniformity (bias field) correction, contextual constraints over spatial intensity distribution and non-spherical cluster\u27s shape in the feature space are incorporated into the fuzzy c-means (FCM) for segmentation of three-dimensional multi-spectral MR images. The bias field is modeled by a linear combination of smooth polynomial basis functions for fast computation in the clustering iterations. Regularization terms for the neighborhood continuity of either intensity or membership are added into the FCM cost functions. Since the feature space is not isotropic, distance measures, other than the Euclidean distance, are used to account for the shape and volumetric effects of clusters in the feature space. The performance of segmentation is improved by combining the adaptive FCM scheme with the criteria used in Gustafson-Kessel (G-K) and Gath-Geva (G-G) algorithms through the inclusion of the cluster scatter measure. The performance of this integrated approach is quantitatively evaluated on normal MR brain images using the similarity measures. The improvement in the quality of segmentation obtained with our method is also demonstrated by comparing our results with those produced by FSL (FMRIB Software Library), a software package that is commonly used for tissue classification

    MULTIVARIATE ANALYSIS FOR UNDERSTANDING COGNITIVE SPEECH PROCESSING

    Get PDF
    MULTIVARIATE ANALYSIS FOR UNDERSTANDING COGNITIVE SPEECH PROCESSIN

    Evaluation of recurrent glioma and Alzheimer’s disease using novel multimodal brain image processing and analysis

    Get PDF
    Novel analysis techniques were applied to two different sets of multi-modality brain images. Localised metabolic rate within the hippocampus was assessed for its ability to differentiate between groups of healthy, mildly cognitively impaired, and Alzheimer’s disease brains, and an investigation of its potential clinical diagnostic utility was conducted. Relative uptake and retention of two PET tracers (11Carbon Methionine and 18Fluoro Thymidine) in a post-treatment glioma patient cohort was utilized to perform survival prediction analysis

    Validation of 3\u27-deoxy-3\u27-[18F]-fluorothymidine positron emission tomography for image-guidance in biologically adaptive radiotherapy

    Get PDF
    Accelerated tumor cell repopulation during radiation therapy is one of the leading causes for low survival rates of head-and-neck cancer patients. The therapeutic effectiveness of radiotherapy could be improved by selectively targeting proliferating tumor subvolumes with higher doses of radiation. Positron emission tomography (PET) imaging with 3´-deoxy-3´-[18F]-fluorothymidine (FLT) has shown great potential as a non-invasive approach to characterizing the proliferation status of tumors. This thesis focuses on histopathological validation of FLT PET imaging specifically for image-guidance applications in biologically adaptive radiotherapy. The lack of experimental data supporting the use of FLT PET imaging for radiotherapy guidance is addressed by developing a novel methodology for histopathological validation of PET imaging. Using this new approach, the spatial concordance between the intratumoral pattern of FLT uptake and the spatial distribution of cell proliferation is demonstrated in animal tumors. First, a two-dimensional analysis is conducted comparing the microscopic FLT uptake as imaged with autoradiography and the distribution of active cell proliferation markers imaged with immunofluorescent microscopy. It was observed that when tumors present a pattern of cell proliferation that is highly dispersed throughout the tumor, even high-resolution imaging modalities such as autoradiography could not accurately determine the extent and spatial distribution of proliferative tumor subvolumes. While microscopic spatial coincidence between high FLT uptake regions and actively proliferative subvolumes was demonstrated in tumors with highly compartmentalized/aggregated features of cell proliferation, there were no conclusive results across the entire set of utilized tumor specimens. This emphasized the need for addressing the limited resolution of FLT PET when imaging microscopic patterns of cell proliferation. This issue was emphasized in the second part of the thesis where the spatial concordance between volumes segmented on FLT simulated FLT PET images and the three dimensional spatial distribution of cell proliferation markers was analyzed

    Super-resolution for upper abdominal MRI: Acquisition and post-processing protocol optimization using brain MRI control data and expert reader validation

    Get PDF
    Purpose Magnetic resonance (MR) cholangiopancreatography (MRCP) is an established specialist method for imaging the upper abdomen and biliary/pancreatic ducts. Due to limitations of either MR image contrast or low through‐plane resolution, patients may require further evaluation with contrast‐enhanced computed tomography (CT) images. However, CT fails to offer the high tissue‐ductal‐vessel contrast‐to‐noise ratio available on T2‐weighted MR imaging. Methods MR super‐resolution reconstruction (SRR) frameworks have the potential to provide high‐resolution visualizations from multiple low through‐plane resolution single‐shot T2‐weighted (SST2W) images as currently used during MRCP studies. Here, we (i) optimize the source image acquisition protocols by establishing the ideal number and orientation of SST2W series for MRCP SRR generation, (ii) optimize post‐processing protocols for two motion correction candidate frameworks for MRCP SRR, and (iii) perform an extensive validation of the overall potential of upper abdominal SRR, using four expert readers with subspeciality interest in hepato‐pancreatico‐biliary imaging. Results Obtained SRRs show demonstrable advantages over traditional SST2W MRCP data in terms of anatomical clarity and subjective radiologists’ preference scores for a range of anatomical regions that are especially critical for the management of cancer patients. Conclusions Our results underline the potential of using SRR alongside traditional MRCP data for improved clinical diagnosis

    Diffuse Optical Biomarkers Of Breast Cancer

    Get PDF
    Diffuse optical spectroscopy/tomography (DOS/DOT) and diffuse correlation spectroscopy (DCS) employ near-infrared light to non-invasively monitor the physiology of deep tissues. These methods are well-suited to investigation of breast cancer due to their sensitivity to physiological parameters, such as hemoglobin concentration, oxygen saturation, and blood flow. This thesis utilizes these techniques to identify and develop diffuse optical biomarkers for the diagnosis and prognosis of breast cancer. Notably, a novel DOS prognostic marker for predicting pathologic complete response to neoadjuvant chemotherapy using z-score normalization and logistic regression was developed and demonstrated. This investigation found that tumors that were not hypoxic relative to the surrounding tissue were more likely to achieve complete response. Thus, the approach could enable dynamic feedback for the optimization of chemotherapy. Similar logistic regression models based on other optical parameters distinguished tumors from the surrounding normal tissue and diagnosed whether a lesion was malignant or benign. These diagnostic markers improve the ability of DOS/DOT to accurately localize tumors and could serve as a type of optical biopsy to classify suspicious lesions. Another study carried out the first longitudinal DCS blood flow monitoring over a full course of neoadjuvant chemotherapy in humans; this work explored initial correlations between blood flow and response to therapy and showed how DCS and DOS together can more accurately probe tumor physiology than either modality alone. Finally, still other thesis research included the final construction and initial imaging tests of a DOT instrument incorporated into a clinical MRI suite and the optimization of the DOT reconstruction algorithm. In total, these instrumental and algorithmic advances improved DOT image quality, helped to increase contrast between malignant and normal tissue, and eventually could lead to better understanding of tumor microvasculature. These contributions represent important steps towards the translation of diffuse optics into the clinic, demonstrating significant roles for optics to play in the diagnosis, prognosis, and physiological understanding of breast cancer
    corecore