42 research outputs found

    ANÁLISE DO PARADIGMA BITTORRENT PARA STREAMING DE VÍDEO SOB DEMANDA NA INTERNET ANTE ACESSO SEQUENCIAL PARTICIONADO SINCRONIZADO

    Get PDF
    Considering the video-on-demand (VoD) streaming serviceand a mostly sequential-data access pattern by users, thisarticle has the two following goals. Firstly, to analyze theBitTorrent paradigm's eciency under this access-patterntype. Secondly, to propose and analyze a new policy for dataselection by users, denoted as Smart Policy, focused on thisaccess-pattern type. For that, simulations are carried outin dierent VoD streaming scenarios, evaluating a varietyof performance metrics. Compared to previous proposalsin the literature, the nal results highlight optimizationsof up to 24,3% and 100% at the download rate and datawaiting time, respectively. Conclusions and directions forfuture work close this article.DOI: 10.36558/rsc.v11i2.722

    Exploiting the power of multiplicity: a holistic survey of network-layer multipath

    Get PDF
    The Internet is inherently a multipath network: For an underlying network with only a single path, connecting various nodes would have been debilitatingly fragile. Unfortunately, traditional Internet technologies have been designed around the restrictive assumption of a single working path between a source and a destination. The lack of native multipath support constrains network performance even as the underlying network is richly connected and has redundant multiple paths. Computer networks can exploit the power of multiplicity, through which a diverse collection of paths is resource pooled as a single resource, to unlock the inherent redundancy of the Internet. This opens up a new vista of opportunities, promising increased throughput (through concurrent usage of multiple paths) and increased reliability and fault tolerance (through the use of multiple paths in backup/redundant arrangements). There are many emerging trends in networking that signify that the Internet's future will be multipath, including the use of multipath technology in data center computing; the ready availability of multiple heterogeneous radio interfaces in wireless (such as Wi-Fi and cellular) in wireless devices; ubiquity of mobile devices that are multihomed with heterogeneous access networks; and the development and standardization of multipath transport protocols such as multipath TCP. The aim of this paper is to provide a comprehensive survey of the literature on network-layer multipath solutions. We will present a detailed investigation of two important design issues, namely, the control plane problem of how to compute and select the routes and the data plane problem of how to split the flow on the computed paths. The main contribution of this paper is a systematic articulation of the main design issues in network-layer multipath routing along with a broad-ranging survey of the vast literature on network-layer multipathing. We also highlight open issues and identify directions for future work

    A lightweight distributed super peer election algorithm for unstructured dynamic P2P systems

    Get PDF
    Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica e de ComputadoresNowadays with the current growth of information exchange, and the increasing mobility of devices, it becomes essential to use technology to monitor this development. For that P2P networks are used, the exchange of information between agencies is facilitated, these now being applied in mobile networks, including MANETs, where they have special features such as the fact that they are semi-centralized, where it takes peers more ability to make a greater role in the network. But those peer with more capacity, which are used in the optimization of various parameters of these systems, such as optimization\to research, are difficult to identify due to the fact that the network does not have a fixed topology, be constantly changing, (we like to go online and offline, to change position, etc.) and not to allow the exchange of large messages. To this end, this thesis proposes a distributed election algorithm of us greater capacity among several possible goals, enhance research in the network. This includes distinguishing characteristics, such as election without global knowledge network, minimal exchange of messages, distributed decision made without dependence on us and the possibility of influencing the election outcome as the special needs of the network

    Game theory analysis and modeling of sophisticated multi-collusion attack in MANETs

    Get PDF
    Mobile Adhoc Network (MANET) has been a core topic of research since the last decade. Currently, this form of networking paradigm is increasingly being construed as an integral part of upcoming urban applications of Internet-of-Things (IoT), consisting of massive connectivity of diverse types of nodes. There is a significant barrier to the applicability of existing routing approaches in conventional MANETs when integrated with IoT. This routing mismatch can lead to security risks for the MANET-based application tied with the IoT platform. This paper examines a pragmatic scenario as a test case wherein the mobile nodes must exchange multimedia signals for supporting real-time streaming applications. There exist two essential security requirements viz. i) securing the data packet and ii) understanding the unpredictable behavior of the attacker. The current study considers sophistication on the part of attacker nodes. They are aware of each other’s identity and thereby collude to conduct lethal attacks, which is rarely reflected in existing security modeling statistics. This research harnesses the potential modeling aspect of game theory to model the multiple-collusion attacker scenario. It contributes towards i) modeling strategies of regular/malicious nodes and ii) applying optimization principle using novel auxiliary information to formulate the optimal strategies. The model advances each regular node’s capability to carry out precise computation about the opponent player’s strategy prediction, i.e., malicious node. The simulation outcome of the proposed mathematical model in MATLAB ascertains that it outperforms the game theory’s baseline approach

    Content Replication and Placement Schemes for Wireless Mesh Networks

    No full text
    Recently, Wireless Mesh Networks (WMNs) have attracted much of interest from both academia and industry, due to their potential to provide an alternative broadband wireless Internet connectivity. However, due to different reasons such as multi-hop forwarding and the dynamic wireless link characteristics, the performance of current WMNs is rather low when clients are soliciting Web contents. Due to the evolution of advanced mobile computing devices; it is anticipated that the demand for bandwidth-onerous popular content (especially multimedia content) in WMNs will dramatically increase in the coming future. Content replication is a popular approach for outsourcing content on behalf of the origin content provider. This area has been well explored in the context of the wired Internet, but has received comparatively less attention from the research community when it comes to WMNs. There are a number of replica placement algorithms that are specifically designed for the Internet. But they do not consider the special features of wireless networks such as insufficient bandwidth, low server capacity, contention to access the wireless medium, etc. This thesis studies the technical challenges encountered when transforming the traditional model of multi-hop WMNs from an access network into a content network. We advance the thesis that support from packet relaying mesh routers to act as replica servers for popular content such as media streaming, results in significant performance improvement. Such support from infrastructure mesh routers benefits from knowledge of the underlying network topology (i.e., information about the physical connections between network nodes is available at mesh routers). The utilization of cross-layer information from lower layers opens the door to developing efficient replication schemes that account for the specific features of WMNs (e.g., contention between the nodes to access the wireless medium and traffic interference). Moreover, this can benefit from the underutilized resources (e.g., storage and bandwidth) at mesh routers. This utilization enables those infrastructure nodes to participate in content distribution and play the role of replica servers. In this thesis, our main contribution is the design of two lightweight, distributed, and scalable object replication schemes for WMNs. The first scheme follows a hierarchical approach, while the second scheme follows a flat one. The challenge is to replicate content as close as possible to the requesting clients and thus, reduce the access latency per object, while minimizing the number of replicas. The two schemes aim to address the questions of where and how many replicas should be placed in the WMN. In our schemes, we consider the underlying topology joint with link-quality metrics to improve the quality of experience. We show using simulation tests that the schemes significantly enhance the performance of a WMN in terms of reducing the access cost, bandwidth consumption and computation/communication cost

    Recent Trends in Communication Networks

    Get PDF
    In recent years there has been many developments in communication technology. This has greatly enhanced the computing power of small handheld resource-constrained mobile devices. Different generations of communication technology have evolved. This had led to new research for communication of large volumes of data in different transmission media and the design of different communication protocols. Another direction of research concerns the secure and error-free communication between the sender and receiver despite the risk of the presence of an eavesdropper. For the communication requirement of a huge amount of multimedia streaming data, a lot of research has been carried out in the design of proper overlay networks. The book addresses new research techniques that have evolved to handle these challenges

    Location-aware mechanism for efficient video delivery over wireless mesh networks

    Get PDF
    Due to their flexibility, ease of use, low-cost and fast deployment, wireless Mesh Networks have been widely accepted as an alternative to wired network for last-mile connectivity. When used in conjunction with Peer-to-Peer data transfer solutions, many innovative applications and services such as distributed storage, resource sharing, live TV broadcasting or Video on Demand can be supported without any centralized administration. However, in order to achieve a good quality of service in such variable, error-prone and resource-constrained wireless multi-hop environments, it is important that the associated Peer-to-Peer overlay is not only aware of the availability, but also of the location and available path link quality of its peers and services. This thesis proposes a wireless location-aware Chord-based overlay mechanism for Wireless Mesh Networks (WILCO) based on a novel geographical multi-level ID mapping and an improved finger table. The proposed scheme exploits the location information of mesh routers to decrease the number of hops the overlay messages traverse in the physical topology. Analytical and simulation results demonstrate that in comparison to the original Chord, WILCO has significant benefits: it reduces the number of lookup messages, has symmetric lookup on keys in both the forward and backward direction of the Chord ring and achieves a stretch factor of O(1). On top of this location-aware overlay, a WILCO-based novel video segment seeking algorithm is proposed to make use of the multi-level WILCO ID location-awareness to locate and retrieve requested video segments from the nearest peer in order to improve video quality. An enhanced version of WILCO segment seeking algorithm (WILCO+) is proposed to mitigate the sometimes suboptimal selection of the WILCO video segment seeking algorithm by extracting coordinates from WILCO ID to enable location-awareness. Analytical and simulation results illustrate that the proposed scheme outperforms the existing state-of-the-art solutions in terms of PSNR and packet loss with different background traffic loads. While hop count is frequently strongly correlated to Quality of Service, the link quality of the underlying network will also have a strong influence on content retrieval quality. As a result, a Cross-layer Wireless Link Quality-aware Overlay peer selection mechanism (WLO) is proposed. The proposed cross-layer mechanism uses a Multiplication Selector Metric (MSM) to select the best overlay peer. The proposed MSM overcomes the two issues facing the traditional summation-based metric, namely, the difficulty of bottleneck link identification and the influence of hop count on behavior. Simulation results show that WLO outperforms the existing state-of-the-art solutions in terms of video quality at different background loads and levels of topology incompleteness. Real life emulation-based tests and subjective video quality assessments are also performed to show that the simulation results are closely matched by the real-life emulation-based results and to illustrate the significant impact of overlay peer selection on the user perceived video quality
    corecore