41,617 research outputs found

    Finding Patterns in a Knowledge Base using Keywords to Compose Table Answers

    Full text link
    We aim to provide table answers to keyword queries against knowledge bases. For queries referring to multiple entities, like "Washington cities population" and "Mel Gibson movies", it is better to represent each relevant answer as a table which aggregates a set of entities or entity-joins within the same table scheme or pattern. In this paper, we study how to find highly relevant patterns in a knowledge base for user-given keyword queries to compose table answers. A knowledge base can be modeled as a directed graph called knowledge graph, where nodes represent entities in the knowledge base and edges represent the relationships among them. Each node/edge is labeled with type and text. A pattern is an aggregation of subtrees which contain all keywords in the texts and have the same structure and types on node/edges. We propose efficient algorithms to find patterns that are relevant to the query for a class of scoring functions. We show the hardness of the problem in theory, and propose path-based indexes that are affordable in memory. Two query-processing algorithms are proposed: one is fast in practice for small queries (with small patterns as answers) by utilizing the indexes; and the other one is better in theory, with running time linear in the sizes of indexes and answers, which can handle large queries better. We also conduct extensive experimental study to compare our approaches with a naive adaption of known techniques.Comment: VLDB 201

    Space-Efficient Biconnected Components and Recognition of Outerplanar Graphs

    Get PDF
    We present space-efficient algorithms for computing cut vertices in a given graph with nn vertices and mm edges in linear time using O(n+min⁥{m,nlog⁥log⁥n})O(n+\min\{m,n\log \log n\}) bits. With the same time and using O(n+m)O(n+m) bits, we can compute the biconnected components of a graph. We use this result to show an algorithm for the recognition of (maximal) outerplanar graphs in O(nlog⁥log⁥n)O(n\log \log n) time using O(n)O(n) bits

    View Selection in Semantic Web Databases

    Get PDF
    We consider the setting of a Semantic Web database, containing both explicit data encoded in RDF triples, and implicit data, implied by the RDF semantics. Based on a query workload, we address the problem of selecting a set of views to be materialized in the database, minimizing a combination of query processing, view storage, and view maintenance costs. Starting from an existing relational view selection method, we devise new algorithms for recommending view sets, and show that they scale significantly beyond the existing relational ones when adapted to the RDF context. To account for implicit triples in query answers, we propose a novel RDF query reformulation algorithm and an innovative way of incorporating it into view selection in order to avoid a combinatorial explosion in the complexity of the selection process. The interest of our techniques is demonstrated through a set of experiments.Comment: VLDB201
    • 

    corecore