265 research outputs found

    Mobile IP: state of the art report

    Get PDF
    Due to roaming, a mobile device may change its network attachment each time it moves to a new link. This might cause a disruption for the Internet data packets that have to reach the mobile node. Mobile IP is a protocol, developed by the Mobile IP Internet Engineering Task Force (IETF) working group, that is able to inform the network about this change in network attachment such that the Internet data packets will be delivered in a seamless way to the new point of attachment. This document presents current developments and research activities in the Mobile IP area

    Authenticated wireless roaming via tunnels : making mobile guests feel at home

    Get PDF
    In wireless roaming a mobile device obtains a service from some foreign network while being registered for the similar service at its own home network. However, recent proposals try to keep the service provider role behind the home network and let the foreign network create a tunnel connection through which all service requests of the mobile device are sent to and answered directly by the home network. Such Wireless Roaming via Tunnels (WRT) others several (security) benefits but states also new security challenges on authentication and key establishment, as the goal is not only to protect the end-to-end communication between the tunnel peers but also the tunnel itself. In this paper we formally specify mutual authentication and key establishment goals for WRT and propose an efficient and provably secure protocol that can be used to secure such roaming session. Additionally, we describe some modular protocol extensions to address resistance against DoS attacks, anonymity of the mobile device and unlinkability of its roaming sessions, as well as the accounting claims of the foreign network in commercial scenarios

    Mobile IP: state of the art report

    Get PDF

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio

    Virtual closed networks: A secure approach to autonomous mobile ad hoc networks

    Get PDF
    The increasing autonomy of Mobile Ad Hoc Networks (MANETs) has enabled a great many large-scale unguided missions, such as agricultural planning, conservation and similar surveying tasks. Commercial and military institutions have expressed great interest in such ventures; raising the question of security as the application of such systems in potentially hostile environments becomes a desired function of such networks. Preventing theft, disruption or destruction of such MANETs through cyber-attacks has become a focus for many researchers as a result. Virtual Private Networks (VPNs) have been shown to enhance the security of Mobile Ad hoc Networks (MANETs), at a high cost in network resources during the setup of secure tunnels. VPNs do not normally support broadcast communication, reducing their effectiveness in high-traffic MANETs, which have many broadcast communication requirements. To support routing, broadcast updates and efficient MANET communication, a Virtual Closed Network (VCN) architecture is proposed. By supporting private, secure communication in unicast, multicast and broadcast modes, VCNs provide an efficient alternative to VPNs when securing MANETs. Comparative analysis of the set-up overheads of VCN and VPN approaches is provided between OpenVPN, IPsec, Virtual Private LAN Service (VPLS), and the proposed VCN solution: Security Using Pre-Existing Routing for MANETs (SUPERMAN)

    Future Trends and Challenges for Mobile and Convergent Networks

    Get PDF
    Some traffic characteristics like real-time, location-based, and community-inspired, as well as the exponential increase on the data traffic in mobile networks, are challenging the academia and standardization communities to manage these networks in completely novel and intelligent ways, otherwise, current network infrastructures can not offer a connection service with an acceptable quality for both emergent traffic demand and application requisites. In this way, a very relevant research problem that needs to be addressed is how a heterogeneous wireless access infrastructure should be controlled to offer a network access with a proper level of quality for diverse flows ending at multi-mode devices in mobile scenarios. The current chapter reviews recent research and standardization work developed under the most used wireless access technologies and mobile access proposals. It comprehensively outlines the impact on the deployment of those technologies in future networking environments, not only on the network performance but also in how the most important requirements of several relevant players, such as, content providers, network operators, and users/terminals can be addressed. Finally, the chapter concludes referring the most notable aspects in how the environment of future networks are expected to evolve like technology convergence, service convergence, terminal convergence, market convergence, environmental awareness, energy-efficiency, self-organized and intelligent infrastructure, as well as the most important functional requisites to be addressed through that infrastructure such as flow mobility, data offloading, load balancing and vertical multihoming.Comment: In book 4G & Beyond: The Convergence of Networks, Devices and Services, Nova Science Publishers, 201
    • …
    corecore