5,167 research outputs found

    Wood polymer composites and their contribution to cascading utilisation

    Get PDF
    Due to a shortage of resources and a growing competition of land use, sustainable and efficient resource utilisation becomes increasingly important. The application and multiple, cascading utilisation of renewable resources is aimed at to ensure an allocation and future availability of resources. Wood polymer composites (WPCs) are a group of innovative materials consisting of mainly renewable resources. By means of summarizing recent research, it is shown how WPC can potentially contribute to an enhanced cascading utilisation. For the production of WPC, waste materials and by-products from wood and agricultural industry, e.g. offcuts, sawdust, residues from board manufacturing, pulping sludge, can serve as a raw material. Furthermore, the cited literature presents the use of recycled polymers and biopolymers as a potential alternative for the polymer component of WPC. By using biodegradable polymers, a fully biodegradable composite can be formed. In addition to using recycled materials and potentially being biodegradable, it is pointed out that WPC furthermore offers the possibility of being recycled itself, therefore being considered as a “green composite”. Although the influence of contaminated waste streams and mixed filler and polymer types on the properties of WPC made with such recyclates is yet not fully understood and no collection systems exist for post-consumer WPC, in-house recycling on the production sites is identified as a promising option as it reduces production costs and enhances resource efficiency and cascading utilisation. On the basis of cited life cycle assessments, the eco friendliness of WPC is assessed resulting in the conclusion that WPC cannot compete with solid wood with respect to environmental impact but is an environmentally friendly alternative to neat plastics in several applications

    Survey of Bayesian Networks Applications to Intelligent Autonomous Vehicles

    Full text link
    This article reviews the applications of Bayesian Networks to Intelligent Autonomous Vehicles (IAV) from the decision making point of view, which represents the final step for fully Autonomous Vehicles (currently under discussion). Until now, when it comes making high level decisions for Autonomous Vehicles (AVs), humans have the last word. Based on the works cited in this article and analysis done here, the modules of a general decision making framework and its variables are inferred. Many efforts have been made in the labs showing Bayesian Networks as a promising computer model for decision making. Further research should go into the direction of testing Bayesian Network models in real situations. In addition to the applications, Bayesian Network fundamentals are introduced as elements to consider when developing IAVs with the potential of making high level judgement calls.Comment: 34 pages, 2 figures, 3 table

    Innovation in manufacturing through digital technologies and applications: Thoughts and Reflections on Industry 4.0

    Get PDF
    The rapid pace of developments in digital technologies offers many opportunities to increase the efficiency, flexibility and sophistication of manufacturing processes; including the potential for easier customisation, lower volumes and rapid changeover of products within the same manufacturing cell or line. A number of initiatives on this theme have been proposed around the world to support national industries under names such as Industry 4.0 (Industrie 4.0 in Germany, Made-in-China in China and Made Smarter in the UK). This book presents an overview of the state of art and upcoming developments in digital technologies pertaining to manufacturing. The starting point is an introduction on Industry 4.0 and its potential for enhancing the manufacturing process. Later on moving to the design of smart (that is digitally driven) business processes which are going to rely on sensing of all relevant parameters, gathering, storing and processing the data from these sensors, using computing power and intelligence at the most appropriate points in the digital workflow including application of edge computing and parallel processing. A key component of this workflow is the application of Artificial Intelligence and particularly techniques in Machine Learning to derive actionable information from this data; be it real-time automated responses such as actuating transducers or informing human operators to follow specified standard operating procedures or providing management data for operational and strategic planning. Further consideration also needs to be given to the properties and behaviours of particular machines that are controlled and materials that are transformed during the manufacturing process and this is sometimes referred to as Operational Technology (OT) as opposed to IT. The digital capture of these properties and behaviours can then be used to define so-called Cyber Physical Systems. Given the power of these digital technologies it is of paramount importance that they operate safely and are not vulnerable to malicious interference. Industry 4.0 brings unprecedented cybersecurity challenges to manufacturing and the overall industrial sector and the case is made here that new codes of practice are needed for the combined Information Technology and Operational Technology worlds, but with a framework that should be native to Industry 4.0. Current computing technologies are also able to go in other directions than supporting the digital ‘sense to action’ process described above. One of these is to use digital technologies to enhance the ability of the human operators who are still essential within the manufacturing process. One such technology, that has recently become accessible for widespread adoption, is Augmented Reality, providing operators with real-time additional information in situ with the machines that they interact with in their workspace in a hands-free mode. Finally, two linked chapters discuss the specific application of digital technologies to High Pressure Die Casting (HDPC) of Magnesium components. Optimizing the HPDC process is a key task for increasing productivity and reducing defective parts and the first chapter provides an overview of the HPDC process with attention to the most common defects and their sources. It does this by first looking at real-time process control mechanisms, understanding the various process variables and assessing their impact on the end product quality. This understanding drives the choice of sensing methods and the associated smart digital workflow to allow real-time control and mitigation of variation in the identified variables. Also, data from this workflow can be captured and used for the design of optimised dies and associated processes

    Cyber Security and Critical Infrastructures

    Get PDF
    This book contains the manuscripts that were accepted for publication in the MDPI Special Topic "Cyber Security and Critical Infrastructure" after a rigorous peer-review process. Authors from academia, government and industry contributed their innovative solutions, consistent with the interdisciplinary nature of cybersecurity. The book contains 16 articles: an editorial explaining current challenges, innovative solutions, real-world experiences including critical infrastructure, 15 original papers that present state-of-the-art innovative solutions to attacks on critical systems, and a review of cloud, edge computing, and fog's security and privacy issues

    Automated and intelligent hacking detection system

    Get PDF
    Dissertação de mestrado integrado em Informatics EngineeringThe Controller Area Network (CAN) is the backbone of automotive networking, connecting many Electronic ControlUnits (ECUs) that control virtually every vehicle function from fuel injection to parking sensors. It possesses,however, no security functionality such as message encryption or authentication by default. Attackers can easily inject or modify packets in the network, causing vehicle malfunction and endangering the driver and passengers. There is an increasing number of ECUs in modern vehicles, primarily driven by the consumer’s expectation of more features and comfort in their vehicles as well as ever-stricter government regulations on efficiency and emissions. Combined with vehicle connectivity to the exterior via Bluetooth, Wi-Fi, or cellular, this raises the risk of attacks. Traditional networks, such as Internet Protocol (IP), typically have an Intrusion Detection System (IDS) analysing traffic and signalling when an attack occurs. The system here proposed is an adaptation of the traditional IDS into the CAN bus using a One Class Support Vector Machine (OCSVM) trained with live, attack-free traffic. The system is capable of reliably detecting a variety of attacks, both known and unknown, without needing to understand payload syntax, which is largely proprietary and vehicle/model dependent. This allows it to be installed in any vehicle in a plug-and-play fashion while maintaining a large degree of accuracy with very few false positives.A Controller Area Network (CAN) é a principal tecnologia de comunicação interna automóvel, ligando muitas Electronic Control Units (ECUs) que controlam virtualmente todas as funções do veículo desde injeção de combustível até aos sensores de estacionamento. No entanto, não possui por defeito funcionalidades de segurança como cifragem ou autenticação. É possível aos atacantes facilmente injetarem ou modificarem pacotes na rede causando estragos e colocando em perigo tanto o condutor como os passageiros. Existe um número cada vez maior de ECUs nos veículos modernos, impulsionado principalmente pelas expectativas do consumidores quanto ao aumento do conforto nos seus veículos, e pelos cada vez mais exigentes regulamentos de eficiência e emissões. Isto, associada à conexão ao exterior através de tecnologias como o Bluetooth, Wi-Fi, ou redes móveis, aumenta o risco de ataques. Redes tradicionais, como a rede Internet Protocol (IP), tipicamente possuem um Intrusion Detection Systems (IDSs) que analiza o tráfego e assinala a presença de um ataque. O sistema aqui proposto é uma adaptação do IDS tradicional à rede CAN utilizando uma One Class Support Vector Machine (OCSVM) treinada com tráfego real e livre de ataques. O sistema é capaz de detetar com fiabilidade uma variedade de ataques, tanto conhecidos como desconhecidos, sem a necessidade de entender a sintaxe do campo de dados das mensagens, que é maioritariamente proprietária. Isto permite ao sistema ser instalado em qualquer veículo num modo plug-and-play enquanto mantém um elevado nível de desempenho com muito poucos falsos positivos
    corecore