1,057 research outputs found

    Optimality of the Width-ww Non-adjacent Form: General Characterisation and the Case of Imaginary Quadratic Bases

    Get PDF
    Efficient scalar multiplication in Abelian groups (which is an important operation in public key cryptography) can be performed using digital expansions. Apart from rational integer bases (double-and-add algorithm), imaginary quadratic integer bases are of interest for elliptic curve cryptography, because the Frobenius endomorphism fulfils a quadratic equation. One strategy for improving the efficiency is to increase the digit set (at the prize of additional precomputations). A common choice is the width\nbd-ww non-adjacent form (\wNAF): each block of ww consecutive digits contains at most one non-zero digit. Heuristically, this ensures a low weight, i.e.\ number of non-zero digits, which translates in few costly curve operations. This paper investigates the following question: Is the \wNAF{}-expansion optimal, where optimality means minimising the weight over all possible expansions with the same digit set? The main characterisation of optimality of \wNAF{}s can be formulated in the following more general setting: We consider an Abelian group together with an endomorphism (e.g., multiplication by a base element in a ring) and a finite digit set. We show that each group element has an optimal \wNAF{}-expansion if and only if this is the case for each sum of two expansions of weight 1. This leads both to an algorithmic criterion and to generic answers for various cases. Imaginary quadratic integers of trace at least 3 (in absolute value) have optimal \wNAF{}s for w4w\ge 4. The same holds for the special case of base (±3±3)/2(\pm 3\pm\sqrt{-3})/2 and w2w\ge 2, which corresponds to Koblitz curves in characteristic three. In the case of τ=±1±i\tau=\pm1\pm i, optimality depends on the parity of ww. Computational results for small trace are given

    Tietojenkäsittelytieteen päivät 2010

    Get PDF

    Group law computations on Jacobians of hyperelliptic curves

    Get PDF
    We derive an explicit method of computing the composition step in Cantor’s algorithm for group operations on Jacobians of hyperelliptic curves. Our technique is inspired by the geometric description of the group law and applies to hyperelliptic curves of arbitrary genus. While Cantor’s general composition involves arithmetic in the polynomial ring F_q[x], the algorithm we propose solves a linear system over the base field which can be written down directly from the Mumford coordinates of the group elements. We apply this method to give more efficient formulas for group operations in both affine and projective coordinates for cryptographic systems based on Jacobians of genus 2 hyperelliptic curves in general form

    Koblitz curves over quadratic fields

    Get PDF
    In this work, we retake an old idea that Koblitz presented in his landmark paper, where he suggested the possibility of defining anomalous elliptic curves over the base field F4. We present a careful implementation of the base and quadratic field arithmetic required for computing the scalar multiplication operation in such curves. We also introduce two ordinary Koblitz-like elliptic curves defined over F4 that are equipped with efficient endomorphisms. To the best of our knowledge these endomorphisms have not been reported before. In order to achieve a fast reduction procedure, we adopted a redundant trinomial strategy that embeds elements of the field F4^m, with m a prime number, into a ring of higher order defined by an almost irreducible trinomial. We also present a number of techniques that allow us to take full advantage of the native vector instructions of high-end microprocessors. Our software library achieves the fastest timings reported for the computation of the timing-protected scalar multiplication on Koblitz curves, and competitive timings with respect to the speed records established recently in the computation of the scalar multiplication over binary and prime fields

    Arithmetic of τ\tau-adic Expansions for Lightweight Koblitz Curve Cryptography

    Get PDF
    Koblitz curves allow very efficient elliptic curve cryptography. The reason is that one can trade expensive point doublings to cheap Frobenius endomorphisms by representing the scalar as a tau-adic expansion. Typically elliptic curve cryptosystems, such as ECDSA, also require the scalar as an integer. This results in a need for conversions between integers and the tau-adic domain, which are costly and hinder the use of Koblitz curves on very constrained devices, such as RFID tags, wireless sensors, or certain applications of the Internet of things. We provide solutions to this problem by showing how complete cryptographic processes, such as ECDSA signing, can be completed in the tau-adic domain with very few resources. This allows outsourcing conversions to a more powerful party. We provide several algorithms for performing arithmetic operations in the tau-adic domain. In particular, we introduce a new representation allowing more efficient and secure computations compared to the algorithms available in the preliminary version of this work from CARDIS 2014. We also provide datapath extensions with different speed and side-channel resistance properties that require areas from less than one hundred to a few hundred gate equivalents on 0.13-mu m CMOS. These extensions are applicable for all Koblitz curves.Peer reviewe

    Hardware Implementations of Scalable and Unified Elliptic Curve Cryptosystem Processors

    Get PDF
    As the amount of information exchanged through the network grows, so does the demand for increased security over the transmission of this information. As the growth of computers increased in the past few decades, more sophisticated methods of cryptography have been developed. One method of transmitting data securely over the network is by using symmetric-key cryptography. However, a drawback of symmetric-key cryptography is the need to exchange the shared key securely. One of the solutions is to use public-key cryptography. One of the modern public-key cryptography algorithms is called Elliptic Curve Cryptography (ECC). The advantage of ECC over some older algorithms is the smaller number of key sizes to provide a similar level of security. As a result, implementations of ECC are much faster and consume fewer resources. In order to achieve better performance, ECC operations are often offloaded onto hardware to alleviate the workload from the servers' processors. The most important and complex operation in ECC schemes is the elliptic curve point multiplication (ECPM). This thesis explores the implementation of hardware accelerators that offload the ECPM operation to hardware. These processors are referred to as ECC processors, or simply ECPs. This thesis targets the efficient hardware implementation of ECPs specifically for the 15 elliptic curves recommended by the National Institute of Standards and Technology (NIST). The main contribution of this thesis is the implementation of highly efficient hardware for scalable and unified finite field arithmetic units that are used in the design of ECPs. In this thesis, scalability refers to the processor's ability to support multiple key sizes without the need to reconfigure the hardware. By doing so, the hardware does not need to be redesigned for the server to handle different levels of security. Unified refers to the ability of the ECP to handle both prime and binary fields. The resultant designs are valuable to the research community and industry, as a single hardware device is able to handle a wide range of ECC operations efficiently and at high speeds. Thus, improving the ability of network servers to handle secure transaction more quickly and improve productivity at lower costs

    Point compression for the trace zero subgroup over a small degree extension field

    Get PDF
    Using Semaev's summation polynomials, we derive a new equation for the Fq\mathbb{F}_q-rational points of the trace zero variety of an elliptic curve defined over Fq\mathbb{F}_q. Using this equation, we produce an optimal-size representation for such points. Our representation is compatible with scalar multiplication. We give a point compression algorithm to compute the representation and a decompression algorithm to recover the original point (up to some small ambiguity). The algorithms are efficient for trace zero varieties coming from small degree extension fields. We give explicit equations and discuss in detail the practically relevant cases of cubic and quintic field extensions.Comment: 23 pages, to appear in Designs, Codes and Cryptograph
    corecore