6,084 research outputs found

    Space-efficient Feature Maps for String Alignment Kernels

    Get PDF
    String kernels are attractive data analysis tools for analyzing string data. Among them, alignment kernels are known for their high prediction accuracies in string classifications when tested in combination with SVM in various applications. However, alignment kernels have a crucial drawback in that they scale poorly due to their quadratic computation complexity in the number of input strings, which limits large-scale applications in practice. We address this need by presenting the first approximation for string alignment kernels, which we call space-efficient feature maps for edit distance with moves (SFMEDM), by leveraging a metric embedding named edit sensitive parsing (ESP) and feature maps (FMs) of random Fourier features (RFFs) for large-scale string analyses. The original FMs for RFFs consume a huge amount of memory proportional to the dimension d of input vectors and the dimension D of output vectors, which prohibits its large-scale applications. We present novel space-efficient feature maps (SFMs) of RFFs for a space reduction from O(dD) of the original FMs to O(d) of SFMs with a theoretical guarantee with respect to concentration bounds. We experimentally test SFMEDM on its ability to learn SVM for large-scale string classifications with various massive string data, and we demonstrate the superior performance of SFMEDM with respect to prediction accuracy, scalability and computation efficiency.Comment: Full version for ICDM'19 pape

    Kernel methods in machine learning

    Full text link
    We review machine learning methods employing positive definite kernels. These methods formulate learning and estimation problems in a reproducing kernel Hilbert space (RKHS) of functions defined on the data domain, expanded in terms of a kernel. Working in linear spaces of function has the benefit of facilitating the construction and analysis of learning algorithms while at the same time allowing large classes of functions. The latter include nonlinear functions as well as functions defined on nonvectorial data. We cover a wide range of methods, ranging from binary classifiers to sophisticated methods for estimation with structured data.Comment: Published in at http://dx.doi.org/10.1214/009053607000000677 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Positive Definite Kernels in Machine Learning

    Full text link
    This survey is an introduction to positive definite kernels and the set of methods they have inspired in the machine learning literature, namely kernel methods. We first discuss some properties of positive definite kernels as well as reproducing kernel Hibert spaces, the natural extension of the set of functions {k(x,ā‹…),xāˆˆX}\{k(x,\cdot),x\in\mathcal{X}\} associated with a kernel kk defined on a space X\mathcal{X}. We discuss at length the construction of kernel functions that take advantage of well-known statistical models. We provide an overview of numerous data-analysis methods which take advantage of reproducing kernel Hilbert spaces and discuss the idea of combining several kernels to improve the performance on certain tasks. We also provide a short cookbook of different kernels which are particularly useful for certain data-types such as images, graphs or speech segments.Comment: draft. corrected a typo in figure

    Graph Kernels

    Get PDF
    We present a unified framework to study graph kernels, special cases of which include the random walk (GƤrtner et al., 2003; Borgwardt et al., 2005) and marginalized (Kashima et al., 2003, 2004; MahƩ et al., 2004) graph kernels. Through reduction to a Sylvester equation we improve the time complexity of kernel computation between unlabeled graphs with n vertices from O(n^6) to O(n^3). We find a spectral decomposition approach even more efficient when computing entire kernel matrices. For labeled graphs we develop conjugate gradient and fixed-point methods that take O(dn^3) time per iteration, where d is the size of the label set. By extending the necessary linear algebra to Reproducing Kernel Hilbert Spaces (RKHS) we obtain the same result for d-dimensional edge kernels, and O(n^4) in the infinite-dimensional case; on sparse graphs these algorithms only take O(n^2) time per iteration in all cases. Experiments on graphs from bioinformatics and other application domains show that these techniques can speed up computation of the kernel by an order of magnitude or more. We also show that certain rational kernels (Cortes et al., 2002, 2003, 2004) when specialized to graphs reduce to our random walk graph kernel. Finally, we relate our framework to R-convolution kernels (Haussler, 1999) and provide a kernel that is close to the optimal assignment kernel of Frƶhlich et al. (2006) yet provably positive semi-definite

    A tree-based kernel for graphs with continuous attributes

    Full text link
    The availability of graph data with node attributes that can be either discrete or real-valued is constantly increasing. While existing kernel methods are effective techniques for dealing with graphs having discrete node labels, their adaptation to non-discrete or continuous node attributes has been limited, mainly for computational issues. Recently, a few kernels especially tailored for this domain, and that trade predictive performance for computational efficiency, have been proposed. In this paper, we propose a graph kernel for complex and continuous nodes' attributes, whose features are tree structures extracted from specific graph visits. The kernel manages to keep the same complexity of state-of-the-art kernels while implicitly using a larger feature space. We further present an approximated variant of the kernel which reduces its complexity significantly. Experimental results obtained on six real-world datasets show that the kernel is the best performing one on most of them. Moreover, in most cases the approximated version reaches comparable performances to current state-of-the-art kernels in terms of classification accuracy while greatly shortening the running times.Comment: This work has been submitted to the IEEE Transactions on Neural Networks and Learning Systems for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Efficient LZ78 factorization of grammar compressed text

    Full text link
    We present an efficient algorithm for computing the LZ78 factorization of a text, where the text is represented as a straight line program (SLP), which is a context free grammar in the Chomsky normal form that generates a single string. Given an SLP of size nn representing a text SS of length NN, our algorithm computes the LZ78 factorization of TT in O(nN+mlogā”N)O(n\sqrt{N}+m\log N) time and O(nN+m)O(n\sqrt{N}+m) space, where mm is the number of resulting LZ78 factors. We also show how to improve the algorithm so that the nNn\sqrt{N} term in the time and space complexities becomes either nLnL, where LL is the length of the longest LZ78 factor, or (Nāˆ’Ī±)(N - \alpha) where Ī±ā‰„0\alpha \geq 0 is a quantity which depends on the amount of redundancy that the SLP captures with respect to substrings of SS of a certain length. Since m=O(N/logā”ĻƒN)m = O(N/\log_\sigma N) where Ļƒ\sigma is the alphabet size, the latter is asymptotically at least as fast as a linear time algorithm which runs on the uncompressed string when Ļƒ\sigma is constant, and can be more efficient when the text is compressible, i.e. when mm and nn are small.Comment: SPIRE 201
    • ā€¦
    corecore