7,941 research outputs found

    Efficient Approximation Algorithms for Adaptive Seed Minimization

    Full text link
    As a dual problem of influence maximization, the seed minimization problem asks for the minimum number of seed nodes to influence a required number η\eta of users in a given social network GG. Existing algorithms for seed minimization mostly consider the non-adaptive setting, where all seed nodes are selected in one batch without observing how they may influence other users. In this paper, we study seed minimization in the adaptive setting, where the seed nodes are selected in several batches, such that the choice of a batch may exploit information about the actual influence of the previous batches. We propose a novel algorithm, ASTI, which addresses the adaptive seed minimization problem in O(η⋅(m+n)Δ2ln⁥n)O\Big(\frac{\eta \cdot (m+n)}{\varepsilon^2}\ln n \Big) expected time and offers an approximation guarantee of (ln⁥η+1)2(1−(1−1/b)b)(1−1/e)(1−Δ)\frac{(\ln \eta+1)^2}{(1 - (1-1/b)^b) (1-1/e)(1-\varepsilon)} in expectation, where η\eta is the targeted number of influenced nodes, bb is size of each seed node batch, and Δ∈(0,1)\varepsilon \in (0, 1) is a user-specified parameter. To the best of our knowledge, ASTI is the first algorithm that provides such an approximation guarantee without incurring prohibitive computation overhead. With extensive experiments on a variety of datasets, we demonstrate the effectiveness and efficiency of ASTI over competing methods.Comment: A short version of the paper appeared in 2019 International Conference on Management of Data (SIGMOD '19), June 30--July 5, 2019, Amsterdam, Netherlands. ACM, New York, NY, USA, 18 page

    Influence Maximization with Bandits

    Full text link
    We consider the problem of \emph{influence maximization}, the problem of maximizing the number of people that become aware of a product by finding the `best' set of `seed' users to expose the product to. Most prior work on this topic assumes that we know the probability of each user influencing each other user, or we have data that lets us estimate these influences. However, this information is typically not initially available or is difficult to obtain. To avoid this assumption, we adopt a combinatorial multi-armed bandit paradigm that estimates the influence probabilities as we sequentially try different seed sets. We establish bounds on the performance of this procedure under the existing edge-level feedback as well as a novel and more realistic node-level feedback. Beyond our theoretical results, we describe a practical implementation and experimentally demonstrate its efficiency and effectiveness on four real datasets.Comment: 12 page

    A nonmonotone GRASP

    Get PDF
    A greedy randomized adaptive search procedure (GRASP) is an itera- tive multistart metaheuristic for difficult combinatorial optimization problems. Each GRASP iteration consists of two phases: a construction phase, in which a feasible solution is produced, and a local search phase, in which a local optimum in the neighborhood of the constructed solution is sought. Repeated applications of the con- struction procedure yields different starting solutions for the local search and the best overall solution is kept as the result. The GRASP local search applies iterative improvement until a locally optimal solution is found. During this phase, starting from the current solution an improving neighbor solution is accepted and considered as the new current solution. In this paper, we propose a variant of the GRASP framework that uses a new “nonmonotone” strategy to explore the neighborhood of the current solu- tion. We formally state the convergence of the nonmonotone local search to a locally optimal solution and illustrate the effectiveness of the resulting Nonmonotone GRASP on three classical hard combinatorial optimization problems: the maximum cut prob- lem (MAX-CUT), the weighted maximum satisfiability problem (MAX-SAT), and the quadratic assignment problem (QAP)

    Recent Advances in Graph Partitioning

    Full text link
    We survey recent trends in practical algorithms for balanced graph partitioning together with applications and future research directions

    Stochastic collocation on unstructured multivariate meshes

    Full text link
    Collocation has become a standard tool for approximation of parameterized systems in the uncertainty quantification (UQ) community. Techniques for least-squares regularization, compressive sampling recovery, and interpolatory reconstruction are becoming standard tools used in a variety of applications. Selection of a collocation mesh is frequently a challenge, but methods that construct geometrically "unstructured" collocation meshes have shown great potential due to attractive theoretical properties and direct, simple generation and implementation. We investigate properties of these meshes, presenting stability and accuracy results that can be used as guides for generating stochastic collocation grids in multiple dimensions.Comment: 29 pages, 6 figure

    Evolutionary model type selection for global surrogate modeling

    Get PDF
    Due to the scale and computational complexity of currently used simulation codes, global surrogate (metamodels) models have become indispensable tools for exploring and understanding the design space. Due to their compact formulation they are cheap to evaluate and thus readily facilitate visualization, design space exploration, rapid prototyping, and sensitivity analysis. They can also be used as accurate building blocks in design packages or larger simulation environments. Consequently, there is great interest in techniques that facilitate the construction of such approximation models while minimizing the computational cost and maximizing model accuracy. Many surrogate model types exist ( Support Vector Machines, Kriging, Neural Networks, etc.) but no type is optimal in all circumstances. Nor is there any hard theory available that can help make this choice. In this paper we present an automatic approach to the model type selection problem. We describe an adaptive global surrogate modeling environment with adaptive sampling, driven by speciated evolution. Different model types are evolved cooperatively using a Genetic Algorithm ( heterogeneous evolution) and compete to approximate the iteratively selected data. In this way the optimal model type and complexity for a given data set or simulation code can be dynamically determined. Its utility and performance is demonstrated on a number of problems where it outperforms traditional sequential execution of each model type
    • 

    corecore